MILITARY INSTITUTE OF SCIENCE AND TECHNOLOGY (MIST)

SYLLABUS OF

BACHELOR OF SCIENCE IN INDUSTRIAL & PRODUCTION ENGINEERING

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING (IPE)

MARCH 2024

CERTIFICATE

Certified that this syllabus of Bachelor of Industrial and Production Engineering of Military Institute of Science and Technology (MIST) is prepared by the Following committee members and will be implemented from Level-1 (IPE-09) of academic session 2023-24.

A. President Colonel Syed Rashedul Haque Head, Department of IPE Military Institute of Science and Technology **B.** Internal Members 1. Dr. A.K.M. Nurul Amin Professor, Department of IPE Military Institute of Science and Technology 2. Air Cdre Md Aminul Haque, ndc, psc Dean, Faculty of ME Military Institute of Science and Technology 3. Lieutenant Colonel Md Aminul Islam, PhD, EME Instructor Class-A, Department of EECE

Military Institute of Science and Technology

4.	
	Lieutenant Colonel Md Munir Hossain, M. Phil, AEC
	Instructor Class-A, Science & Humanities Department
	Military Institute of Science and Technology
5.	
<i>.</i>	
	Dr. Tamanna Ishrat Farhana
	Assistant Professor, Science & Humanities Department
	Military Institute of Science and Technology
6.	
	Masud Jahan
	Assistant Professor, Science & Humanities Department
	Military Institute of Science and Technology
7.	
	Dr. Muammer Din Arif
	Assistant Professor, Department of ME
	Military Institute of Science and Technology
8.	
	T. : M11.1
	Tariq Mahbub
	Assistant Professor, Department of ME
	Military Institute of Science and Technology
0	
9.	
	Dr. T. M. Shahriar Sazzad
	Assistant Professor, Department of CSE
	Military Institute of Science and Technology

ii RESTRICTED

10.	
-	Major Adib Bin Rashid, EME
	Instructor Class-B, Department of IPE
	Military Institute of Science and Technology
11.	
_	Imran Ahmed
	Assistant Professor, Department of IPE
	Military Institute of Science and Technology
12.	
	Basit Mahmud Shahriar
	Lecturer, Department of IPE
	Military Institute of Science and Technology
13.	
	Noshin Tasnim Tuli
	Lecturer, Department of IPE
	Military Institute of Science and Technology
14.	
_	Sinthea Khatun
	Lecturer, Department of IPE
	Military Institute of Science and Technology

15.	
13.	D.C.I.D.I.I.
	Rafid Buksh
	Lecturer, Science & Humanities Department
	Military Institute of Science and Technology
16.	
	Mustafa Saadman Sakib
	Lecturer, Science & Humanities Department
	Military Institute of Science and Technology
17.	
	Farheen Akter Bhuian
	Lecturer, Science & Humanities Department
	Military Institute of Science and Technology
18.	
	Tahiya Akter
	Lecturer, Science & Humanities Department
	Military Institute of Science and Technology
	2
~	
C	. BUP Members
1.	
	Brigadier General Md Mustafa Kamal, SGP
	Dean, Faculty of Science and Technology (FST)
	Bangladesh University of Professionals (BUP)
2.	
	Brigadier General Md Mahbubur Rahman Siddiqui, ndc, afwc, psc
	Inspector of Colleges
	Bangladesh University of Professionals (BUP)

D. External Members

1.	
	Dr. Ferdous Sarwar
	Professor, IPE Department
	Bangladesh University of Engineering and Technology (BUET)
2.	
	Dr. Md. Anayet Ullah Patwari
	Professor and Dean, Faculty of Engineering and Technology
	Islamic University of Technology (IUT)
3.	
	Dr. Mohammad Sarwar Morshed
	Professor, IPE Department
	Ahsanullah University of Science and Technology (AUST)
	E. Members (External: Professional Organization/ Industry)
1.	
	Colonel Kazi A S M Shahriar Pervez, psc
	EME Directorate, Army HQ

2.	
	Helal Uddin
	General Manager, Manufacturing,
	Singer Bangladesh Ltd.
3.	
	Abdullah Noor-e-Mostofa
	Country Safety, Health and Environment Manager,
	Unilever Bangladesh Ltd.
4.	
	Md. Abid Al Rabbi
	In Charge, Factory Operation,
	Butterfly Manufacturing Co. Ltd.
5.	
	Md. Nur Alam
	Zonal Manager,
	Nitol Motors Ltd.

CONTENTS

CHAPTER 1 GENERAL INFORMATION

1.1		Introduction to MIST	1
1.2		Vision and Mission of MIST	1
1.3		Motto and Values of MIST	1
1.4		Eligibility of Students for Admission in MIST	2
1.5		Seat Capacity	2
1.6		Admission Procedure	3
	1.6.1	Syllabus for Admission Test	3
	1.6.2	Final Selection	3
	1.6.3	Medical Checkup	4
1.7		Students Withdrawal Policy	4
	1.7.1	For Poor Academic Performance	4
	1.7.2	Withdrawal on Disciplinary Ground	4
	1.7.3	Withdrawal on Own Accord	5
CHA	PTER 2	<u>.</u>	
RULI	ES AND	REGULATION FOR UNDERGRADUATE PROGRAM AT MIST	
3.1	Introd	uction	6
3.2	The C	ourse System	6
2.5		er of Terms in a Year	6
2.6	Durati	on of Terms	6
2.7	Course	e Pattern and Credit Structure	7
2.8		e Distribution System	7
2.10	_	nment of Credits	7
2.11		of Courses	7
2.12		e Offering and Instruction	8
2.14		er Student Interaction	8
2.15		nt Advisor	8
2.18		e Registration	8
2.19		ration Procedure	8
2.20		nditions for Registration	9
2.21	_	ration Deadline	9
2.22		y for Late Registration	9
2.23		s on the Credit Hours to be taken	9
2.25		e Add/Drop	9
2.27		rawal from a Term	10
2.28		rading System	10
2.29	Theor		11
2.30		onal/Practical Examinations	11
2.31		onal Course in English	12
2.32		Attendance	12
2.33	_	giate and Non-collegiate	12
2.34		lation of GPA	12
2.36		ts of Grade Earned fication of Students	13 14
/. 4·I	UJASSI	HCZHOH OF AMORIIS	14

2.43	Definition of Graduating Student	14
2.44	Performance Evaluation	14
2.47	Minimum Earned Credit and GPA Requirement for Obtaining Degree	15
2.49	Application for Graduation and Award of Degree	15
2.50	Time Limits for Completion of Bachelor's Degree	15
2.51	Attendance, Conduct and Discipline	15
2.52	Attendance	15
2.53	Conduct and Discipline	15
2.54	Teacher-Student Interaction	15
2.55	Absence during a Term	16
2.56	Recognition of Performance	16
2.57	Types of Different Examination	16
2.58	Term Final Examination	16
2.59	Supplementary Examination	17
2.60	Improvement Examination	17
2.61	Irregular Graduation	18
2.62	Minimum Earned Credit and CGPA Requirement for Obtaining Degree	18
2.63	Consequences of Failing in Sessional Exam	18
2.64	Withdrawal for Poor Performance	18
2.65	Voluntary Withdrawal for Sickness	18
2.66	Class Tests	18
2.68	Summary of MIST Examination Policy-2020	19
СНА	PTER 3	
DEPA	ARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING (IPE)	
3.1	Introduction to the Program	19
3.2	Vision and Mission of the Program	19
3.3	Program Outcomes	21
3.4	Generic Skills	23
3.5	Curricular/Skill mapping	23
СНА	PTER 4	
COU	RSE CURRICULUM OF BACHELOR DEGREE IN IPE 24	
4.1	Introduction	24
4.2	Course Schedule	24
4.3	Contact Hours and Credit Hours Distribution in Eight Terms	25
4.4	Term-wise Distribution of Courses	26
4.5	List of Elective Courses	30
4.6	List of Courses Offered to Other Departments	30
СНА	PTER 5	
DESC	CRIPTION OF IPE COURSES	
5.1	Detailed Curriculum of IPE Core Courses	31
5.2	Detailed Curriculum of IPE Optional Courses	250

RESTRICTED

viii RESTRICTED

CHAPTER 6 DESCRIPTION OF BASIC SCIENCE, MATHEMATICS, LANGUAGE AND GENERAL EDUCATION COURSES

6.1	Detailed Curriculum of Basic Science Courses	342
6.2	Detailed Curriculum of Mathematics Courses	364
6.3	Detailed Curriculum of Language Courses	402
6.4	Detailed Curriculum of General Education Courses	414
	APTER 7 CRIPTION OF OTHER ENGINEERING COURSES	
7.1	Detailed Curriculum of CSE Courses	459
7.2	Detailed Curriculum of ME Courses	470
73	Detailed Curriculum of FECE Courses	481

CHAPTER 1

GENERAL INFORMATION

1.1. <u>Introduction to MIST</u>

The necessity of establishing a technical institute for the Bangladesh Armed Forces was felt in the late eighties. In the absence of such an institution, officers of Bangladesh Armed Forces had been graduating from Bangladesh University of Engineering and Technology (BUET), Bangladesh Institute of Technology (BIT), and other foreign institutions of science and technology. With a view to meet the increasing demand for the development and dissemination of engineering and technological knowledge, Bangladesh Armed Forces established the Military Institute of Science and Technology (MIST) on 19 April 1998. Upholding the motto – "Technology for Advancement", MIST promises to provide facilities for higher technical education both for the officers of Bangladesh Armed Forces as well as for civil students from home and abroad. MIST started its journey on 31 January 1999 by offering a four-year bachelor degree in Civil Engineering (CE). Bachelor degree in Computer Science and Engineering (CSE) course started on 2001. Bachelor degree in Electrical, Electronic and Communication Engineering (EECE) and Mechanical Engineering (ME) started from 2003. Bachelor degree in Aeronautical Engineering (AE), and Naval Architecture and Marine Engineering (NAME) started from 2008-2009 and 2012-2013, respectively. Besides, four new departments started their academic session from 2014-2015, which are Nuclear Engineering (NE), Biomedical Engineering (BME), Environmental, Water Resources & Coastal Engineering (EWCE) and Architecture (Arch). From 2016 another two new departments named Industrial and Production Engineering (IPE), and Petroleum and Mining Engineering (PME) have started their journey to fulfill the motto of MIST.

1.2 <u>Vision and Mission of MIST</u>

Vision: To be a center of excellence for providing quality education in the field of science, engineering and technology and conduct research to meet the national and global challenges.

Mission: MIST is working on following missions:

- a. Develop as a Centre of Excellence for providing comprehensive education and conduct research in diverse disciplines of science, engineering, technology, and engineering management.
- b. Produce technologically advanced intellectual leaders and professionals with highmoral and ethical values to meet the socio-economic development of Bangladesh and global needs.
- c. Conduct collaborative research activities with national and international communities for continuous interaction with academia and industry.
- d. Provide consultancy, advisory, testing, and other related services to government, non-government and autonomous organization including personal for widening practical knowledge and to contribute in sustainable development of the society.

1.3 Motto and Values of MIST

Motto: As an institution without gender biasness, MIST is steadily upholding its motto "Technology **for** Advancement" and remains committed to contributing to the wider spectrum of national educational arena, play a significant role in the development of human resources and gradually pursuing its goal to grow into a **'Centre of Excellence'**.

Values:

- a. **Humanity-**MIST not only makes our students graduates but also strives to makethem humane.
- b. **Discipline-** Discipline remains the corner stone of continuous success stories of MIST.
- c. **Morality -** Morality is innate. MIST helps nurture it and develops our students as Quality Engineers with Morality.
- d. **Quality -** MIST keeps focusing on quality education with inspiration to life-long learning so that our graduates are recognized in the world and can prove their acquired skills.

1.4 Eligibility of Students for Admission in MIST

The students must fulfill the following requirements:

- a. **<u>Bangladeshi Students:</u>** Minimum qualifications to take part in the admission test are as follows:
 - (1) The applicant must have passed the SSC/Equivalent examination obtaining a minimum GPA of 4.00 (without fourth subject) and HSC/Equivalent examination obtaining minimum total grade point 17 in four subjects (Mathematics, Physics, Chemistry, and English).
 - (2) The applicant must have passed the GCE 'O' Level obtaining minimum B grade in five subjects including Mathematics, Physics, Chemistry, and English, and GCE 'A' Level obtaining minimum B grade in Mathematics, Physics, and Chemistry.
 - (3) Applicants who have passed HSC or GCE 'A' Level or Equivalent examination in current year or one year before the notification for admission can apply.
- b. **Foreign Students.** Maximum 3% of overall vacancies available will be kept reserved for the foreign students and will be offered to foreign countries through Armed Forces Division (AFD) of the Government of the People's Republic of Bangladesh. Applicants must fulfill the following requirements:
 - (1) Educational qualifications as applicable for Bangladeshi students or equivalent.
 - (2) Must have security clearance from respective Embassy/ High Commission in Bangladesh.

In the event of non-availability of foreign students, the vacancies will be filled up by Bangladeshi civil students as per merit.

1.5 **Seat Capacity.**

Department wise seat allotment for four years Bachelor Degree in Engineering programs (Unit – A) and five years Bachelor Degree of Architecture programs are as follows:

Seat Allocation

Ser	Unit	Department	Seats
1		Civil Engineering (CE)	60
2		Computer Science and Engineering (CSE)	60
3		Electrical, Electronic and Communication Engineering (EECE)	60
4		Mechanical Engineering (ME)	60
5		Aeronautical Engineering (AE)	50
6	A	Naval Architecture and Marine Engineering (NAME)	40
7		Biomedical Engineering (BME)	40
8		Nuclear Engineering (NE)	40
9		Environmental, Water Resources and Coastal Engineering (EWCE)	60
10		Industrial and Production Engineering (IPE)	50
11		Petroleum and Mining Engineering (PME)	25
12	В	Architecture (Arch)	25
	Total		570

The total number is 570. In general, about 50% seats will be allocated to military officers. However, in case of the requirement of military students vacancy is less in any particular year, the deficient vacancy will be filled up by civil students. MIST also maintains quota as mentioned below:

Ser	Quota Allocation	Seats
1	General Candidates	54%
2	Children of Military Personnel	40%
3	Children of Freedom Fighters	2%
4	Tribal Citizen	1%
5	International Students	3%
	Total	100%

1.6 Admission Procedure

1.6.1 Syllabus for admission test. Admission test will be conducted on the basis of the syllabus of Mathematics, Physics, Chemistry and English subjects of HSC examination. Admission test will be conducted out of 200 marks and the distribution of marks is given below:

Ser.	Subjects	Marks
a.	Mathematics	80
b.	Physics	60
c.	Chemistry	40
d.	English	20
	Total	200

1.6.2 Final Selection. Students will be selected on the basis of results of the admission test only. Individual choice for selection of departments will be given preference as far as possible. In case of tie in the result of admission test, difference will be judged on the basis of marks obtained in Mathematics, Physics, Chemistry and English respectively in admission test.

1.6.3 Medical Checkup. Civil candidates selected provisionally are to undergo medical check-up at MIST medical centre. They will have to produce test reports of urine for R/E, blood for HBs Ag and blood grouping before the MIST medical authority. The medical authority will decide on the physical fitness of candidates for admission in MIST.

1.7 Students Withdrawal Policy

1.7.1 For Poor Academic Performance.

The under graduate (B.Sc) Engineering programs for all engineering disciplines are planned for 04 regular levels, comprising of 08 regular terms (for Architecture program it is planned for 5 regular levels, comprising of 10 regular terms). It is expected that all students will earn degree by clearing all the offered courses in the stipulated time. In case of failure the following policies will be adopted:

- a. Students failing in any course/subject will have to clear/pass the said course/subject by appearing it in supplementary examination as per examination policy. Students may also retake the failed subject/course in regular term as per the Examination policy.
- b. Maximum grading for supplementary examination of failed subjects will be B+ as per examination policy.
- c. One student can retake/reappear in a failed subject/course only twice. However, with the Permission of Academic Council of MIST, a student may be allowed for third time as last chance.
- d. In case of sickness, which leads to missing of more than 40% classes or miss term final examination (supported by requisite medical documents), students may be allowed to withdraw temporarily from that term and repeat the whole level with the regular level in the next academic session, subject to the approval of Academic Council of MIST. Students may retain sessional courses of that term if applies and approved by Academic council. `VW" as grading of each course to be reflected in concerned tabulation sheet, grade sheet and transcript. However, he/she has to complete the whole undergraduate program within 06 (six) academic years (for Architecture 07 academic years) from the date of his/her registration.
- e. Minimum credit requirement for the award of bachelor degree in Engineering (BSc. Engg.) and Architecture (B. Arch) will be decided by the respective department as per the existing rules. However the minimum CGPA requirement for obtaining a bachelor degree in engineering and Architecture is 2.20.
- f. Whatever may be the cases, students have to complete the whole undergraduate program within 06 (six) academic years from the date of registration.
- g. All other terms and condition of MIST Examination Policy remain valid.

1.7.2 Withdrawal on Disciplinary Ground

- a <u>Unfair Means</u>. Adoption of unfair means may result in expulsion of a student from the program and so from the Institution. The Academic Council will authorize such expulsion on the basis of recommendation of the Disciplinary Committee, MIST and as per policy approved by the affiliating university. Following would be considered as unfair means adopted during examinations and other contexts:
- (1) Communicating with fellow students for obtaining help in the examination.
- (2) Copying from another student's script/ report /paper.
- (3) Copying from desk or palm of a hand or from other incrimination documents.
- (4) Possession of any incriminating document whether used or not.

- c. <u>Influencing Grades.</u> Academic Council may expel/withdraw any student for approaching directly or indirectly in any form to influence a teacher or MIST authority for grades.
- d. **Other Indiscipline Behaviors.** Academic Council may withdraw/expel any student on disciplinary ground if any form of indiscipline or unruly behavior is seen in him/her which may disrupt the academic environment/program or is considered detrimental to MIST's image.
- e. <u>Immediate Action by the Disciplinary Committee of MIST</u>. The Disciplinary Committee, MIST may take immediate disciplinary action against any student of the Institution. In case of withdrawal/expulsion, the matter will be referred to the Academic Council, MIST for post-facto approval.

1.7.3 Withdrawal on Own Accord.

- a **<u>Permanent Withdrawal.</u>** A student who has already completed some courses and has not performed satisfactorily may apply for a withdrawal.
- b. **Temporary Withdrawal.** A student, if he/she applies, may be allowed to withdraw temporarily from the program, subject to approval of Academic Council of MIST, but he/she has to complete the whole program within 06 (six) academic years (for Architecture 07 academic years) from the date of his/her registration.

CHAPTER 2

RULES AND REGULATIONS FOR UNDERGRADUATE PROGRAM AT MIST

Introduction

21 MIST has started course system for undergraduate studies from the academic session 2017-18. Therefore, the rules and regulations mentioned in this paper will be applicable to students for administering undergraduate curriculum through the Course System. This policy will be introduced with an aim of creating a continuous, even and consistent workload throughout the term for the students.

The Course System

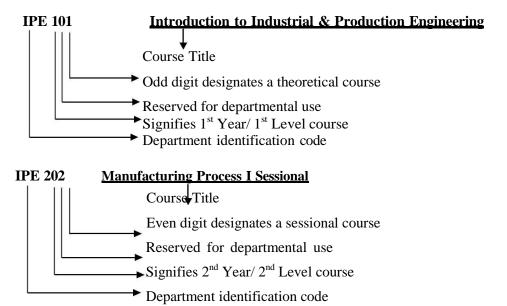
- 22 The salient features of the Course System are as follows:
 - a. Number of theory courses will be generally 06 or as per syllabus in each term. However, with the recommendation of course coordinator and Head of the Department, Commandant MIST may allow up to 07 courses in exceptional cases if department can accommodate within 24 cr hr.
 - b. Students will not face any level repeat for failing.
 - c. Students will get scope to improve their grading.
 - d. Introduction of more optional courses to enable the students to select courses according to their individual needs and preferences.
 - e. Continuous evaluation of students" performance.
 - f. Promotion of student-teacher interaction and contact.
- 23 Beside the professional courses pertaining to each discipline, the undergraduate curriculum gives a strong emphasis on acquiring thorough knowledge in the basic sciences of mathematics, physics and chemistry. Due importance is also given on the study of several subjects in humanities and social sciences.
- 24 The first two years of bachelor's degree programs generally consist of courses on basic engineering, general science and humanities subjects; while the third and subsequent years focus on specific disciplines.

Number of Terms in a Year

25 There will be two terms Spring Term (Jan-Jun) and Fall Term (Jul-Dec) in an academic year.

Duration of Terms

26 The duration of each of Spring Term and Fall Term (maximum 22 weeks) may be as under:


Ser	Events	Durations
1.	Classes before Mid Term	7 weeks
2.	Mid Term Vacation	1 week
3.	Classes after Mid Term	7 weeks
4.	Makeup Classes and Preparatory leave	2/3 weeks
5.	Term Final Examination	2/3 weeks
6.	Term End Vacation	1/2 week

Course Pattern and Credit Structure

27 The undergraduate program is covered by a set of theoretical courses along with a set of laboratory (sessional) courses to support them.

Course Designation System

- **28** Each course is designated by a maximum of three/four letter code identifying the department offering the course followed by a three-digit number having the following interpretation:
 - a. The first digit corresponds to the year/level in which the course is normally taken by the students.
 - b. The second digit is reserved for departmental use. It usually identifies a specific area/group of study within the department.
 - c. The last digit is an odd number for theoretical courses and an even number for sessional courses.
- 29 The course designation system is illustrated as Follows:

Assignment of Credits

- **210** The assignment of credits to a theoretical course follows a different rule from that of a sessional course.
 - a. Theoretical Courses: One lecture per week per term is equivalent to one credit.
- b. Sessional Courses: Credits for sessional courses is half of the class hours per week per term. Credits are also assigned to project and thesis work taken by the students. The amount of credits assigned to such work varies from one discipline to another.

Types of Courses

- 211 The types of courses included in the undergraduate curricula are divided into the following groups:
 - a. <u>Core Courses</u>: In each discipline, a number of courses are identified as core courses, which form the nucleus of the respective bachelor's degree program. A student has tocomplete all the designated core courses of his/her discipline.
 - b. <u>Prerequisite Courses</u>: Some of the core courses are identified as prerequisite courses for a specific subject.

c. <u>Optional Courses</u>: Apart from the core courses, the students can choose from a set of optional courses. A required number of optional courses from a specified group have to be chosen.

Course Offering and Instruction

- 212 The courses to be offered in a particular term are announced and published in the Course Catalog along with the tentative Term Schedule before the end of the previous term. The courses to be offered in any term will be decided by Board of Undergraduate Studies (BUGS) of the respective department.
- 213 Each course is conducted by a course teacher who is responsible for maintaining the expected standard of the course and for the assessment of students' performance. Depending on the strength of registered students (i.e. on the number of students) enrolled for the course, the teacher concerned might have course associates and Teaching Assistants (TA) to aid in teaching and assessment.

Teacher Student Interaction

214 The new course system encourages students to come in close contact with the teachers. For promotion of a high level of teacher-student interaction, each student is assigned to an adviser and the student is free to discuss all academic matters with his/her adviser. Students are also encouraged to meet any time with other teachers for help and guidance in academic matters. However, students are not allowed to interact with teachers after the moderation of questions.

Student Adviser

- 215 One adviser is normally appointed for a group of students by the BUGS of the concerned department. The adviser advises each student about the courses to be taken in each term by discussing the academic program of that particular term with the student.
- 216 However, it is also the student's responsibility to keep regular contact with his/her adviser who will review and eventually approve the student's specific plan of study and monitor subsequent progress of the student.
- 217 For a student of second and subsequent terms, the number and nature of courses for which he/she can register is decided on the basis of academic performance during the previous terms. The adviser may permit the student to drop 1 or more courses based on previous academic performance.

Course Registration

- **218** Any student who uses classroom, laboratory facilities or faculty-time is required to register formally. Upon admission to the MIST, students are assigned to advisers. These advisers guide the students in choosing and registering courses.
- **219** Registration Procedure. At the commencement of each term, each student has to register for courses in consultation with and under the guidance of his/her adviser. The date, time and venue of registration are announced in advance by the Registrar's Office. Counseling and advising are accomplished at this time. It is absolutely essential that all the students be present for registration at the specified time.

220 Pre-conditions for Registration.

a. For first year students, department-wise enrollment/admission is mandatory prior to

registration. At the beginning of the first term, an orientation program will be conducted for them where they are handed over with the registration package on submission of the enrolment slip.

- b. Any student, other than the new batch, with outstanding dues to the MIST or a hall of residence is not permitted to register. Each student must clear their dues and obtain a clearance certificate, upon production of which, he/she will be given necessary Course Registration Forms to perform course registration.
- c. A student is allowed to register in a particular course subject to the class capacity constraints and satisfaction of pre-requisite courses. However, even if a student fails in a pre-requisite course in any term, the concerned department (BUGS) may allow him/her to register for a course which depends upon the pre- requisite course provided that his/her attendance and performance in the continuous assessment of the mentioned pre- requisite course is found to be satisfactory.
- **Registration Deadline.** Each student must register for the courses to be taken before the commencement of each term. Late registration is permitted only during the first week of classes. Late registration after this date will not be accepted unless the student submits a written application to the registrar through the concerned Head of the department explaining the reasons for delay. Acceptable reasons may be medical problems with supporting documents from the Medical Officer of MIST or some other academic commitments that prohibit enrollment prior to the last date of registration.
- **Penalty for Late Registration**. Students who fail to register during the designated dates for registration are charged a late registration fee of Tk. 100.00 (One hundred only) per credit hours. Penalty for late registration will not be waived.

Limits on the Credit Hours to be taken

- A student should be enrolled for at least 15 credit hours and is allowed to take a maximum of 24 credit hours. Relaxation on minimum credit hours may be allowed. A student must enroll for the sessional courses prescribed in a particular term within the allowable credit hour limits.
- 224 In special cases where it is not possible to allot the minimum required 15 credit hours to a student, the concerned department (BUGS) may permit with the approval of the Commandant, a lesser number of credit hours to suit individual requirements. Only graduating students may be allowed to register less than 15 Cr Hr without approval of Commandant. A list of all such cases to be forwarded to the Register Office, ICT Directorate and Controller of Exam Office by the respective Department.

Course Add/Drop

- 225 A student has some limited options to add or drop courses from the registration list. Addition of courses is allowed only within the first two weeks of a regular term. Dropping a course is permitted within the first four weeks of a regular term. Add or drop is not allowed after registration of courses for Supplementary-I and Supplementary-II Examination.
- 226 Any student willing to add or drop courses has to fill up a Course Adjustment Form. This also has to be done in consultation with and under the guidance of the student's respective adviser. The original copy of the Course Adjustment Form has to be submitted to the Registrar's Office, where the required numbers of photocopies are to be made for distribution to the concerned adviser, Head, Dean, Controller of Examinations and the student. All changes must be approved by the adviser and the Head of the concerned department. The Course Adjustment Form has to be submitted after being signed by the concerned persons.

Withdrawal from a Term

227 If a student is unable to complete the Term Final Examination due to serious illness or serious accident, he/she may apply to the Head of the degree awarding department for total withdrawal from the term before commencement of term final examination. However application may be considered during term final examination in special case. The application must be supported by a medical certificate from the Medical Officer of MIST. The concerned student may opt for retaining the sessional courses of the term. The Academic Council will take the final decision about such applications. However, the total duration for graduation will not exceed 6 academic years.

The Grading System

228 The total performance of a student in a given course is based on a scheme of continuous assessment, for theory courses this continuous assessment is made through a set of quizzes, class tests, class evaluation, class participation, homework assignment and a term final examination. The assessments for sessional courses are made by evaluating performance of the student at work during the class, viva-voce during laboratory hours and quizzes. Besides that, at the end there will be a final lab test. Each course has a certain number of credits, which describes its corresponding weightages. A student's performance is measured by the number of credits completed satisfactorily and by the weighted average of the grade points earned. A minimum grade point average (GPA) is essential for satisfactory progress. A minimum number of earned credits also have to be acquired in order to qualify for the degree. Letter grades and corresponding grade points will be given as follows:

Grading	System	
Numerical Markings	Grade	Grade Points
80% and above	A+	4.00
75% to below 80%	A	3.75
70% to below 75%	A-	3.50
65% to below 70%	B+	3.25
60% to below 65%	В	3.00
55% to below 60%	B-	2.75
50% to below 55%	C+	2.50
45% to below 50%	С	2.25
40% to below 45%	D	2.00
below 40%	F*	0.00
	AB	Absent
	DC	Dis-collegiate
	VW	Voluntary Withdrawn
	X	Project/ Thesis Continuation
	Е	Expelled
	S	Satisfactory

^{*} Subject in which the student gets F grade shall not be regarded as earned credit hours for the calculation of Grade Point Average (GPA).

Distribution of Marks

Theory. Forty percent (40%) of marks of a theoretical course shall be allotted for Continuous Assessment, i.e. assignments, class tests, pop quizzes, observations, projects and mid-term assessment. These marks must be submitted to Office of the Controller of Examinations before

commencement of the final exam. The rest of the marks will be allotted to the Term Final Examination. The duration of final examination will be three (03) hours. The scheme of continuous assessment that a particular teacher would follow for a course will be announced on the first day of the classes. Distribution of marks for a given course per credit is as follows:

Class Performance	5%
Class Test/Assignment	20%
Mid-Term Assessment (Exam/Project)	15%
Final Examination (Section A and B)	60%
Total	100%

Note:

- a. In final exam, each section can be used for achieving not more than two course outcomes (COs). The remaining COs should be attained from mid-term assessment or class tests. Course teacher has to inform the student the beginning of the terms.
- b. Course teacher of a particular course has to inform the department whether he/she wants to assess mid-term through exam or project within first two weeks of beginning of a term. The duration of mid-term examination should not be more than 50 minutes which has to be conducted in between 6th to 9th week of a semester. If mid-term assessment is done through project, then there should be project report and presentation.
- c. The weightage of class performance can be assessed through checking attentiveness during classes or arranging unnoticed pop quizzes.
- d. The number of class tests shall be n for 3.0 and above credit courses and (n-1) shall be considered for grading where n is the number of credits of the course. However, for courses having credits below 3.0, the considered class tests shall be 2 out of 3.
- e. All class test will carry 20 marks each. Exam software system will finally convert these achieved marks into total class test marks as per credit hour i.e. for n=1(20), n=2 (40), n=3 (60), n=4(80), etc.
- f. Irrespective of the result of the continuous assessment (class performance, class test, midterm assessment), a student has to appear in the final examination (where applicable) for qualifying/passing the concern course/ subject.
- **230** Laboratory/ Sessional/ Practical Examinations. Laboratory/Sessional courses are designed and conducted by the concerned departments. Examination on laboratory/sessional/practical subjects will be conducted by the respective department before the commencement of term final examination. The date of practical examination will be fixed by the respective department. Students will be evaluated in the laboratory/sessional courses on the basis of the followings:

Conduct of Lab Tests/Class Performance	25%	
Report Writing/Programming	15%	
Mid-Term Evaluation (exam/project/assignment)	20%	
Final Evaluation (exam/project/assignment)	30%	
Viva Voce/Presentation	10%	
Total	100%	

Note: the above distribution of percentage is a general guideline. Department can rearrange to some extent if required.

231 Sessional Course in English. The distribution will be as under:

Class performance/observation	10%
Written Assignment	15%
Oral Performance	25%
Listening Skill	10%
Group Presentation	30%
Viva Voce	10%
Total	100%

Class attendance. Class attendance may be considered as a part of continuous assessment. No mark should be allotted for attending classes.

Collegiate and Non-collegiate

233 Students having class attendance of 85% or above in individual subject will be treated as collegiate, and less than 85% and up to 70% will be treated as non-collegiate in that subject. The non-collegiate student(s) may be allowed to appear at the examination subject to payment of non-collegiate fee/fine of an amount fixed by MIST/BUP. Students having class attendance below 70% will be treated as dis-collegiate and will not be allowed to appear at the examination and treated as fail. But in a special case such students may be allowed to appear in the examination with the permission of Commandant and it must be approved by the Academic Council.

Calculation of CGPA

234 Grade Point Average (GPA) is the weighted average of the grade points obtained of all the courses passed/completed by a student. For example, if a student passes/completes n courses in a term having credits of C_1 , C_2 , ..., C_n and his grade points in these courses are G_1 , G_2 , ..., G_n , respectively, then

$$GPA = \frac{\sum_{i}^{n} C_{i}G_{i}}{\sum_{i}^{n} C_{i}}$$

235 The Cumulative Grade Point Average (CGPA) is the weighted average of the GPA obtained in all the terms passed/completed by a student. For example, if a student passes/ completes n terms having total credits of TC_1 , TC_2 , ..., TC_n and his GPA in these terms are GPA_1 , GPA_2 ,..., GPA_n , respectively then

$$CGPA = \frac{\sum_{i}^{n} TC_{i}GPA_{i}}{\sum_{i}^{n} TC_{i}}$$

Numerical Example

Suppose a student has completed nine courses in a term and obtained the following grades:

Course	Credit Ci	Grade Points	Gi	Ci*Gi
IPE 101	3.00	A	3.75	11.25
EECE 172	0.75	A+	4.00	3.00
MATH 101	3.00	A-	3.50	10.50
PHY 133	3.00	B+	3.25	9.75
GEE 101	3.00	A	3.75	11.25
LANG 102	1.50	A	3.75	5.625
CHEM 101	3.00	A	3.75	11.25
GEBS 101	3.00	A-	3.50	10.50
CHEM 102	1.50	B+	3.25	4.875
Total	21.75			78.00

GPA = 78/21.75 = 3.59

Suppose a student has completed four terms and obtained the following GPA:

Level	Term	Earned Credit Hours	Earned GPA	TCi*GPAi
		Tci	GPAi	
1	I	21.75	3.75	81.5625
1	II	20.75	3.61	74.9075
2	I	19.50	3.21	62.595
2	II	21.00	2.98	62.58
Total		83.00		281.645

CGPA = 281.645/83 = 3.39

Impacts of Grade Earned

- 236 The courses in which a student has earned a D or a higher grade will be counted as credits earned by him/her. Any course in which a student has obtained an F grade will not be counted towards his/her earned credits or GPA calculation. However, the F grade will remain permanently on the Grade Sheet and the Transcript.
- 237 A student who obtains an F grade in a core course will have to repeat that particular course. However, if a student gets an F in an optional course, he/she may choose to repeat that course or take a substitute course if available. When a student will repeat a course in which he/she has previously obtained an F, he/she will not be eligible to get a grade better than B+ in that repeated course.
- **238** If a student obtains a grade lower than B+ in a particular course he/she will be allowed to repeat the course only **once** for the purpose of grade improvement. However, he/she will not be eligible to get a grade better than B+ for an improvement course.
- 239 A student will be permitted to repeat for grade improvement purposes a maximum of 6 courses in BSc. Engineering programs and a maximum of 7 courses in B. Arch. Program.
- **240** If a student obtains a B+ or a better grade in any course he/she will not be allowed to repeat the course for the purpose of grade improvement.

Classification of Students

241 At MIST, regular students are classified according to the number of credit hours completed/ earned towards a degree. The following classification applies to all the students:

Level	Credit I	Iours Earned
	Engineering/URP	Architecture
Level 1	0.0 to 36.0	0.0 to 34.0
Level 2	More than 36.0 to 72.0	More than 34.0 to 72.0
Level 3	More than 72.0 to 108.0	More than 72.0 to 110.0
Level 4	More than 108.0	More than 110.0 to 147.0
Level 5		More than 147.0

- 242 However, before the commencement of each term all students other than new batch are classified into three categories:
 - a. **Category 1:** This category consists of students who have passed all the courses described for the term. A student belonging to this category will be eligible to register for all courses prescribed for the upcoming term.
 - b. Category 2: This category consists of students who have earned a minimum of 15 credits but do not belong to category 1. A student belonging to this category is advised to take at least one course less since he might have to register for one or more backlog courses as prescribed by his/her adviser.
 - c. Category 3: This category consists of students who have failed to earn the minimum required 15 credits in the previous term. A student belonging to this category is advised to take at least two courses less than a category 1 student subject to the constraint of registering at least 15 credits. However, he will also be required to register for backlog courses as prescribed by the adviser.
- **243 Definition of Graduating Student.** Graduating students are those students who will have ≤ 24 credit hours for completing the degree requirement.

Performance Evaluation

- **244** The performance of a student will be evaluated in terms of two indices, viz. Term Grade Point Average and Cumulative Grade Point Average which is the grade average for all the terms completed.
- **245** Students will be considered to be making normal progress toward a degree if their Cumulative Grade Point Average (CGPA) for all work attempted is 2.20 or higher. Students who regularly maintain a term GPA of 2.20 or better are making good progress toward the degrees and are in good standing with MIST. Students who fail to maintain this minimum rate of progress will not be in good standing. This can happen when any one of the following conditions exists.
 - a. The term GPA falls below 2.20.
 - b. The Cumulative Grade Point Average (CGPA) falls below 2.20.
 - c. The earned number of credits falls below 15 times the number of terms attended.
- 246 All such students can make up their deficiencies in GPA and credit requirements by completing courses in the subsequent term(s) and supplementary exams, if there are any, with better grades. When the minimum GPA and credit requirements are achieved, the student is again returned to good standing.

Minimum Earned Credit and GPA Requirement for Obtaining Degree

- 247 Minimum credit hour requirements for the award of bachelor's degree in engineering (BSc Engg) and architecture (B. Arch) will be decided by the respective department (BUGS). However, the syllabus of all BSc engineering program must be of minimum 157 credit hours or more, and for architecture program minimum 189 credit hours or more. A student must earn minimum credit hour set in the syllabus by the concerned department for qualifying Bachelor's Degree. The minimum CGPA requirement for obtaining a Bachelor's degree in engineering and architecture is 2.20.
- **248** A student may take additional courses with the consent of his/her Adviser in order to raise CGPA, but he/she may take a maximum of 15 such additional credits in engineering and 18 such additional credits in architecture beyond respective credit-hour requirements for Bachelor's degree during his/her entire period of study.

Application for Graduation and Award of Degree

249 A student who has fulfilled all the academic requirements for Bachelor's degree will have to apply to the Controller of Examinations through his/her Adviser for graduation. Provisional Degree will be awarded by BUP on completion of credit and GPA requirements.

Time Limits for Completion of Bachelor's Degree

250 A student must complete his studies within a maximum period of **six** years for engineering and seven years for architecture bachelor's degree.

Attendance, Conduct and Discipline

- 251 MIST has strict rules regarding the issues of attendance in class and discipline.
- **Attendance.** All students are expected to attend classes regularly. The university believes that attendance is necessary for effective learning. The first responsibility of a student is to attend classes regularly and one is required to attend the classes as per MIST rules.
- **Conduct and Discipline**. During their stay in MIST, all students are required to abide by the existing rules, regulations and code of conduct. Students are strictly forbidden to form or be members of student organization or political party, club, society etc., other than those set up by MIST authority in order to enhance student's physical, intellectual, moral and ethical development. Zero tolerance in regards of sexual abuse and harassment in any forms and drug abuse and addiction are strictly observed in the campus.

Teacher-Student Interaction

254 The academic system in MIST encourages students to come in close contact with the teachers. For promotion of high level of teacher-student's interaction, a course coordinator (CC) is assigned to each course. Students are free to discuss with CC about all academic matters. Students are also encouraged to meet other teachers any time for help and guidance for academic matters. Heads of the departments, Director of Administration, Director of Students Welfare (DSW), Dean and Commandant address the students at some intervals. More so, monthly Commandant's Parade is organized in MIST where all faculty members, staff and students are formed up, thereby increasing teacher-student interaction.

Absence during a Term

255 A student should not be absent from quizzes, tests, etc. during the term. Such absence will naturally lead to reduction in points/marks, which count towards the final grade. Absence in the Term Final Examination will result in an "F" grade in the corresponding course. A student who has been absent for short periods, up to a maximum of three weeks due to illness, should approach the course teacher(s) or the course coordinator(s) for make-up quizzes or assignments immediately upon return to classes. Such request has to be supported by medical certificate from competent authority (e.g. CMH/MIST Medical Officer).

Recognition of Performance

256 As recognition of performance and ensure continued studies MIST awards medals, scholarships and stipends as per existing rules and practices.

Types of Different Examination

- 257 Following different types of final examinations will be conducted in MIST to evaluate the students of Undergraduate Programs:
 - a. **Term Final Examination:** At the end of each normal term (after 22week or so), Term Final Examination will be held. Students will appear in the Term Final Examination for all the theory courses they have taken in the Term.
 - b. **Supplementary Examination:** It will take place twice in a year. Supplementary-I is defined as provision of giving exam in the first week of Spring Term (Jan-Jun)/Fall Term (Jul-Dec) end break and Supplementary-II in the first week of Fall Term (Jul-Dec)/ Spring Term (Jan-Jun) end break, respectively. Students will be allowed to register for a maximum of **two** theory courses (Failed/ Improvement) in Supplementary-I and maximum of one theory course (Failed/ Improvement) in Supplementary-II.
 - c. <u>Improvement Examination:</u> It will be taken during Supplementary-I and Supplementary-II Examination. Questions will be same as the question of the regular examination of that Supplementary Examination (if any). Student can take maximum two subjects at a time (two subjects in Supplementary-I and one subject in Supplementary-II) and maximum 6 subjects in the whole academic duration. If a student obtains a grade lower than

"B+" in a course, he/she will be allowed to repeat the course only once for grade improvement. However, he/she will not be eligible to get a grade better than "B+" for an improvement course. Among the previous result and improvement examination result, best one will be considered as final result for an individual student. However, performance of all examination i.e. previous to improvement examination, shall be reflected in the transcript.

Rules of Different Examinations

Term Final Examination. Following rules to be followed:

- a. Registration to be completed before commencement of the Term. A student has to register his desired courses paying registration, examination fee and other related fees.
- b. Late registration will be allowed without penalty within first two weeks of the term.
- c. Within 1st two weeks of a term a student can Add/Drop course/courses. To add a course, in the 3rd week, one has to register the course by paying additional fees. To drop a course, one has to apply within three weeks and paid fees will be adjusted/ refunded. If anyone wants to drop a course after three weeks and within 4 weeks, that will be permitted but paid fees will not be refunded in that case.

- d. Registrar office will finalize registration of all courses within 7 (seven) weeks, issue registration slip and that will be followed by issuing Admit Card.
- e. Term Final Examination to be conducted in the 18-20th week of the term as per approved Academic Calendar.

259 Supplementary Examination. Following rules to be followed:

- a. Supplementary-I is defined as provision of giving exam in the first week of Spring Term (Jan-Jun) /Fall Term (Jul-Dec) end break and Supplementary-II in the first week of Fall Term (Jul-Dec) / Spring Term (Jan-Jun) end break, respectively.
- b. Students will be allowed to register for a maximum of two theory courses (Failed/ Improvement) in Supplementary-I and maximum of one theory course (Failed/ Improvement) in Supplementary-II.
- c. No class will be conducted.
- d. 40% marks will be considered from the previous exams.
- e. Maximum grading in Supplementary Exam will be B+.
- f. No Sessional Exam will be conducted.
- g. Examination will be taken on 60% marks like Term Final Examination.
- h. If a student fails in a course more than once in regular terms, then for calculating 40% marks, the best one of all continuous assessment marks will be counted.
- j. If anyone fails in the Laboratory/ Sessional course, that course cannot be taken in the supplementary examination.
- k. If any student fails in a course, he can clear the course retaking it second time or, he can clear the examination appearing at the Supplementary Examination as well. Anyone fails twice in a course, can only retake it in the regular term for appearing third time. But anyone fails even after appearing third time, he/she has to take approval of Academic Council of MIST for appearing 4th (last) time in a course and need to pay extra financial penalty. If any student fails even 4th time in a course, will not be allowed to appear anymore in this same course.
- l. Registration of Supplementary-I Exam to be done within 5th week after completion of fall Term (Jul-Dec) and registration of Supplementary-II Exam to be done within the mid-term break of Spring Term (Jan-Jun), paying all the required fees.
- m. There will be no provision for add/drop courses after registration.
- n. **Thesis:** if a student cannot complete thesis in two consecutive terms, with the recommendation of the supervisor, he/she may continue for next one/two term within six academic years.

260 Improvement Examination. Following rules to be followed:

- a. Improvement Examination is to be taken during the Supplementary-I and II examinations.
- b. For Improvement Examination, registration is to be done during the registration of Supplementary-I and Supplementary-II Examinations by paying all the fees.
- c. Question Setting, Moderation and Result Publication to be done with courses of Supplementary-II and Supplementary-II Examinations.
- d. Any student gets a grading below "B+" and desires to improve that course, he will be allowed to appear the Improvement Examination for that particular course.
- e. Highest grade of Improvement Examination will be B+.
- f. One student is allowed to appear at Improvement Exam in 6 (six) courses in his whole graduation period taking maximum two courses at a time (two courses at Supplementary-I and one course at Supplementary-II).

Irregular Graduation

261 If any graduating student clears his/her failed course in Spring Term /Fall Term/

Supplementary Examinations and his graduation requirements are fulfilled, his graduation will be effective from the result publication date of Spring Term /Fall Term / Supplementary Examinations and that student will be allowed to apply for provisional certificate.

Minimum Earned Credit and CGPA Requirement for Obtaining Degree

- 262 The requirements for award of engineering degree are as follows:
 - a. Completion of the courses for the minimum required credits of 157 (or as specified in a particular department) in a maximum period of six academic years.
 - b. Appearing at the final examination in all the required courses as per syllabus of the program.
 - c. Scoring a CGPA of 2.2 or above.

Consequences of Failing in Sessional Courses

263 Any student failing in any sessional course, must re-take that sessional course when offered by the department in any next Regular Term. No Supplementary exam is allowed for sessional course.

Withdrawal for Poor Performance

- 264 A student to remain in reasonable standing must maintain a minimum CGPA of 2.20. Failure to secure/achieve minimum CGPA of 2.20 in two consecutive levels will also lead to withdrawal of the student. A student who fails to maintain a CGPA of 2.20 at the end of a level, but obtains 2.00 or more, will be placed on probation. Failure by a student placed on probation to raise the CGPA to 2.20 in the next level will lead to his withdrawal from the Program. A student failing to maintain a CGPA of 2.20 at the end of the level-4 shall be allowed to repeat courses of the level-4 in which he earned C grades or below. This opportunity will be given only once. Such a student failing to raise CGPA to 2.2 after repeating the courses will be withdrawn from the Program (For further detail MIST Withdrawal Policy' may be consulted).
- **Yoluntary withdrawal for Sickness.** In case of sickness which leads to missing of more than 40% class or miss term final examination (supported by requisite medical documents), students may be allowed to withdraw from that term subject to the approval of the Academic Council of MIST. Students may retain sessional courses of that term if applies and approved by Academic council. VW as grading of each course to be reflected in concerned tabulation sheet, grade sheet and transcript.
- **Class Tests.** The number of class tests shall be n for 3.0 and above credit courses and (n-1) shall be considered for grading where n is the number of credits of the course. However, for courses having credits below 3.0, the considered class tests shall be 2 out of 3. Class test will be conducted by the subject teacher. Duration of class test should not be more than 30 minutes. Course teacher must announce results within 10 days of holding the examination. Checked script will be shown to the students. If a student misses the class test for acceptable reason the course teacher my take the test of the student.
- 267 MIST is committed in conferring degrees to the students in time which plays a very vital role in steering all the academic activities in any university/ institute. At the beginning MIST conducted all its examinations under the examination section of the University of Dhaka. In June 2008, MIST got affiliation with BUP. Since then MIST has been conducting all its examinations under the control and authority of BUP. For the need of time, former MIST examination policy was reviewed several times. Present review committee has made necessary amendment/ addition/ deletion to suit the proposed course system. This policy may be reviewed every after 05 (five) years or as and when felt necessary by the authority of MIST.

2.68 SUMMARY OF MIST EXAMINATION POLICY-2020

Seria 1	Examination Type	Session	Number of Theory Course s	Maximum Grading	Assessment Examinat Percentage Schedule	lion	Courses	Registration Schedule
1	Regular	Spring Term (Jan-Jun) and Fall Term (Jul-Dec)	Maximum 6 A+ Theory	A+	Assessment Regular		Regular	Regular
2	Retake	n)	Courses	B+	on 100%	ıtion		
w.	Supplementary-I	Spring Term (Jan-Jun)	Maximum 2 B+	B+	Assessment	Assessment Term (Jan-Jun)/	Courses	5th week after completion of
	(Fail/Improvement)		Theory		%09 uo		f immediate past terms included	Fall Term (Previous Year)
4	Supplementary-II	Fall Term (Jul-Dec)	Maximum 1	B+	Assessment	1st week of Fall Term	Courses o	Mid-Term Break of
			, 11001 y			Jan- k	past terms not included	Jerms (Jan-Jun) Term (March)

- Maximum 24 credit hour in one regular term (excluding Supplementary Exams).
- Students may register maximum up to 7 (seven) theory courses in exceptional case, if department can accommodate within 24 credit hour. 7:
- Students can register maximum 6 (six) theory courses for improvement in his whole academic period. щ. 4. «.
 - Supplementary-I Exam to be considered as part of previous Academic Year.
- Student appearing in Supplementary-I shall not be included in current graduation ceremony.

CHAPTER 3

DEPARTMENT OF INDUSTRIAL & PRODUCTION ENGINEERING (IPE)

3.1 Introduction to the program

Industrial and production Engineering (IPE) department was established in 2016 under the faculty of Mechanical Engineering to develop much needed professionals required for the growth of modern industries. The focus of undergraduate program in IPE is on manufacturing and quality, process design and productivity improvement, management and host of core subjects to meet the emerging technological needs of the industry. The curriculum has been prepared keeping view with the basic requirements of modern industries, manufacturing factories and in line with the changing trends in this field.

The syllabus is prepared based on BAETE manual -2022 (Editon 2.1) and focused on Outcome Based Education (OBE) conforming to the Washington accord (WA). Whether Industrial and Production engineers are manufacturing superior automobiles, shortening a roller coaster line, streamlining an operating room, or distributing products worldwide, these challenges concentrate on the common goal of saving companies' money and increasing efficiencies. Education in IPE is very much leaned to practical situations and it is not possible to acquire proper knowledge in this field without sufficient exposure to industrial environment. The relationship of the department with the industries will be strengthened through their involvement in curriculum development and various programs such as seminars, visits and student projects. The students will be encouraged to develop themselves through various co- curricular and extra-curricular activities. The department of IPE aims not only to produce efficient engineers, but also well-educated conscientious leaders who can contribute to the development of the country through ameliorating our industries.

A typical under-graduate course on Industrial & Production Engineering emphasizes on manufacturing and improvement of productivity. A student will also learn the trends of dynamics and control and hence will develop a sound knowledge about overall industrial production and management systems. He/she will also learn to analyze the emerging technological trends of the industry.

3.2 <u>Vision and Mission of the Program</u>

Vision: The department of IPE will be globally recognized as a dynamic contributor to the development and dissemination of advanced knowledge in the diverse field of Industrial and Production Engineering. **Mission:** IPE department is working on the following missions:

- a To provide comprehensive education in industrial and production engineering and conduct research.
- b. To produce technologically advanced graduates and professionals with high moral and ethical values to meet the domestic and global needs in the field of industrial and production engineering.
- c. To conduct collaboration and research activities with national and international academia and industry.
- d To provide consultancy, advisory and testing services to public and private organizations including personal in the areas of industrial and production engineering.

3.3 Program Outcomes (PO)

The Bachelor in Industrial and Production Engineering (IPE) program will have the following Program Outcomes (POs):

- a **Engineering knowledge:** Apply knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization as specified in K1 to K4 respectively to the solution of complex engineering problems.
- b. **Problem analysis:** Identify, formulate, research literature and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences. (K1 to K4)
- c. **Design/development of solutions:** Design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations. (K5)
- d **Investigation:** Conduct investigations of complex problems using research-based knowledge (K8) and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.
- e **Modern tool usage:** Create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, to complex engineering problems, with an understanding of the limitations. (K6)
- f. **The engineer and society:** Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems. (K7)
- g **Environment and sustainability:** Understand and evaluate the sustainability and impact of professional engineering work in the solution of complex engineering problems in societal and environmental contexts. (K7)
- h **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice. (K7)
- i **Individual work and teamwork:** Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
- j Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- k **Project management and finance:** Demonstrate knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

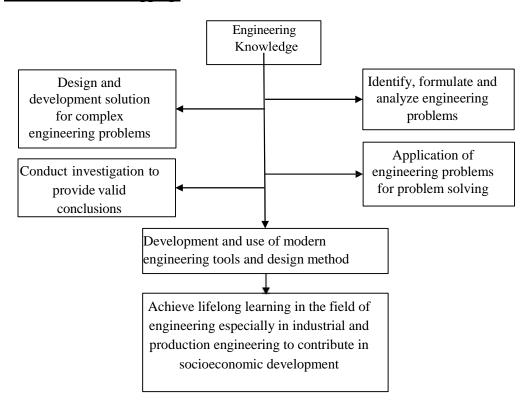
In addition to incorporating the above-listed POs, MIST also included the following Knowledge Profile (K1-K8) as an educational institution: may include additional outcomes in its learning programs. The ranges of Complex Problem Solving (P1 - P7) and Complex Engineering Activities (A1 - A5) that should be addressed in the program are given in Tables 3.2 and 3.3, respectively.

Table 3.1: Knowledge Profile (KP)

	Attribute
K1	A systematic, theory-based understanding of the natural sciences applicable to the discipline
	K2 Conceptually based mathematics, numerical analysis, statistics and the formal aspects of
	computer and information science to support analysis and modeling applicable to the discipline
K3	A systematic, theory-based formulation of engineering fundamentals required in the
	engineering discipline
K4	Engineering specialist knowledge that provides theoretical frameworks and bodies of
	knowledge for the accepted practice areas in the engineering discipline; much is at the
	forefront of the discipline
K5	Knowledge that supports engineering design in a practice area
K6	Knowledge of engineering practice (technology) in the practice areas in the
	engineering discipline
K7	Comprehension of the role of engineering in society and identified issues in engineering
	practice in the discipline: ethics and the engineer's professional
	responsibility to public safety; the impacts of engineering activity; economic, social,
	cultural, environmental and sustainability
K8	Engagement with selected knowledge in the research literature of the discipline

Table 3.2: Range of Complex Engineering Problem Solving

Attribute	Complex Engineering Problems have characteristic P1 and						
	some or all of P2 to P7:						
Depth of knowledge required P1: Cannot be resolved without in-depth engine							
	knowledge at the level of one or more of K3, K4, K5, K6 or K8						
	which allows a fundamentals-based, first principles analytical						
	approach						
Range of conflicting	P2: Involve wide-ranging or conflicting technical, engineering						
Requirements and other issues							
Depth of analysis required	P3: Have no obvious solution and require abstract thinking,						
	originality in analysis to formulate suitable models						
Familiarity of issues	P4: Involve infrequently encountered issues						
Extent of applicable codes	P5: Are outside problems encompassed by standards and codes						
	of practice for professional engineering						
Extent of stakeholder	P6: Involve diverse groups of stakeholders with widely varying						
nvolvement and conflicting needs							
Requirements							
T 1	P7. Are high level problems including many component parts						
Interdependence	P7: Are high level problems including many component parts or sub-problems						


Table 3.3: Range of Complex Engineering Activities

Attribute	Complex activities means (engineering) activities or projects that have some or all of the following characteristics:						
Range of resources	A1: Involve the use of diverse resources (and for this purpose resources include people, money, equipment, materials, information and technologies)						
Level of interaction	A2: Require resolution of significant problems arising from interactions between wide-ranging or conflicting technical, engineering or other issues						
Innovation	A3: Involve creative use of engineering principles and research based knowledge in novel ways						
Consequences for society and the environment	A4: Have significant consequences in a range of contexts, characterized by difficulty of prediction and mitigation						
Familiarity	A5: Can extend beyond previous experiences by applying principles-based approaches						

3.4 Generic Skills

- a Apply the principles and theory of industrial and production engineering knowledge to the requirements, design and development of different industrial and production systems with appropriate understanding.
- b. Define and use appropriate research methods and modern tools to conduct a specific project.
- c Learn independently, be self-aware and self-manage their time and workload.
- d Apply critical thinking to solve complex engineering problems.
- e Analyze real time problems and justify the appropriate use of technology.
- f. Work effectively with others and exhibit social responsibility.

3.5 Curriculum/ Skill mapping:

CHAPTER 4

COURSE CURRICULUM FOR BACHELOR DEGREE IN IPE

4.1 Introduction

The undergraduate students of the Department of Industrial and Production Engineering have to follow the course schedule given in this chapter. The letter prefix in any course number indicates the department offering the course viz. IPE for Industrial and Production Engineering, ME for Mechanical Engineering, EECE for Electrical & Electronic Engineering, CSE for Computer Science and Engineering, CHEM for Chemistry, PHY for Physics, MATH for Mathematics, GES for General Education Sociology, GEA for General Education Accounting, GEE for General Education Economics, GEBS for General Education Bangladesh Studies, GELM for General Education Leadership and Management, GERM for General Education Research Methodology, GEEM for General Education Engineering Ethics, GESL for General Education Sustainability and Law, LANG for Language, and SHOP for Machine Shop. The first digit in the number indicates the year/level for which the course is intended. Odd number courses are theory courses and even numbered courses are sessional courses.

4.2 Course Schedule

Keeping the above-mentioned program outcome, the course schedule for the undergraduate students of the Department of Industrial and Production Engineering is given below:

Level- Term	Lang- uage Cr Hr	General Education Cr Hr	Basic Science Cr Hr	Mathe- matics Cr Hr	Interdisci- plinary Cr Hr	Core Courses Cr Hr	Elective Cr Hr	Total Cr Hr
4 7								10.0
1-I	-	2.0+0.0	6.0+3.0	3.0+0.0	0.0+1.00	3.0+0.0	-	18.0
1-II	0.0+1.5	2.0+0.0	-	3.0+0.0	3.0+2.25	6.0+1.5	-	19.25
2-I	0.0+1.5	2.0+0.0	-	3.0+0.0	6.0+2.25	6.0+2.2	-	23.0
						5		
2-II	-	2.0+0.0	-	3.0+0.0	-	12.0+3.	-	20.0
						0		
3-I	-	2.0+2.0	-	-	-	15.0+2.	-	21.25
						25		
3-II	-	-	-	-	-	17.0+4.	-	21.0
						0		
4-I	-	-	-	-	-	9.0+6.0	6.0*+0	21.0
4-II						6.0+4.5	6.0*+0	16.5
	•		-	-				
Total	0.0+3.0	10+2.0=12	6.0+3.0	12+0.0=	9.0 + 5.5	74+23.5	12.0+0.	160.0
	=3.0		=9.0	12.00	=14.5	=97.5	0=12.0	
% of	9.3	75%%	13.1	125%	9.0625%	60.9375	7.5%	
total						%		
Cr Hr								

^{*}To be selected from the List of Elective Courses

4.3 Contact Hours and Credit Hours Distribution in Eight Terms

Level- Term	Contact hours for theory	Contact hours for sessional	Cumulative contact hours	Cumulative credit
	courses	courses		hours
1-I	14	8	22	18.00
1-II	14	10.5	46.5	37.25
2-I	17	12	75.5	60.25
2-II	17	6	98.5	80.25
3-I	17	8.5	124	101.5
3-II	17	6 + 04 Weeks	147 + 04 Weeks	122.5
4-I	15	12	174 + 04 Weeks	143.5
4-II	12	9	195 + 04 Weeks	160.0
Total	123	72 + 04 Weeks	195 + 04 Weeks	160.0

4.4 Term-wise Distribution of Courses

Level 1 Term I

Course No.	Course Title	Contact	Credit		
		Hour	Hour		
IPE 101	Introduction to Industrial and Production Engineering	3	3.00		
MATH 101	Differential and Integral Calculus	3	3.00		
GESA 101	Sociology and Accounting	2	2.00		
CHEM 109	Basic Chemistry	3	3.00		
PHY 133	Waves & Oscillations, Structure of Matter, Heat and Thermodynamics	3	3.00		
Total Theoreti	cal	14	14.00		
PHY 134	Physics Sessional	3	1.50		
SHOP 172	Machine Shop Practice	2	1.00		
CHEM 110	HEM 110 Chemistry Sessional		1.50		
Total Sessiona	1	8	4.00		
Grand Term 7	Cotal	22.00	18.00		

Level 1 Term II

Course No.	Course Title	Contact	Credit		
		Hour	Hour		
MATH 103	Differential Equations and Matrix	3	3.00		
IPE 105	Engineering Materials	3	3.00		
EECE 171	Basic Electrical & Electronic Circuit	3	3.00		
IPE 107	Engineering Economy	3	3.00		
GEBS 101	Bangladesh Studies	2	2.00		
BAN 1201	Bangla Language and Literature	3	3.00**		
Total Theoretic	cal	14 14.00***			
ME 160	Engineering Drawing	3	1.50		
LANG 102	Communicative English I	3	1.50 *		
EECE 172	Basic Electrical & Electronic Circuit	1.50	0.75		
	Sessional				
IPE 106	Engineering Materials Sessional	3	1.50		
Total Sessional		10.5	5.25		
Grand Term T	'otal	24.5	19.25		

^{*}For local students

Level 2 Term I

Course No.	Course Title	Contact Hour	Credit Hour		
MATH 201	Vector Analysis, Laplace Transformation & Co-ordinate Geometry	3	3.00		
EECE 271	Electrical Machines and Electronics	3	3.00		
CSE 281	Computer Programming	3	3.00		
IPE 201	Manufacturing Processes I	3	3.00		
GELM 275	Leadership and Management	2	2.00		
IPE 205	Probability and Statistics	3	3.00		
Total Theore	tical	17	17.00		
EECE 272	Electrical Machines and Electronics Sessional	1.50	0.75		
CSE 282	Computer Programming Sessional	3	1.50		
IPE 202	Manufacturing Processes I Sessional	1.5	0.75		
IPE 200	Engineering Graphics and CAD Sessional	3	1.50		
LANG 202	Communicative English II	3	1.50*		
Total Session	al	12.0	6.0		
Grand Term	Total	29.0	23.00		

^{*}For local students

Level 2 Term II

Course No.	Course Title	Contact Hour	Credit Hour		
IPE 203	Manufacturing Process II	3	3.00		
GEEM 243	Engineering Ethics and Moral Philosophy	2	2.00		
IPE 243	Mechanics of Solids	3	3.00		
IPE 251	Thermodynamics and Heat Transfer	3	3.00		
MATH 215	Numerical Analysis	3	3.00		
IPE 271	Engineering Mechanics and Mechanics of Machinery	3	3.00		
Total Theoret	ical	17	17.00		
IPE 204	Manufacturing Processes II Sessional	1.5	0.75		
IPE 206	Probability and Statistics Sessional	1.5	0.75		
IPE 244	Mechanics of Solids Sessional	1.5	0.75		
IPE 252	Thermodynamics and Heat Transfer Sessional	1.5	0.75		
Total Sessiona	al	6.0	3.00		
Grand Term	Total	23.0	20.00		

Level 3 Term I

Course No.	Course Title	Contact Hour	Credit Hour
IPE 351	Fluid Mechanics & Machinery	3	3.00
IPE 301	Measurement, Instrumentation and Control	3	3.00
IPE 303	Product Design I	3	3.00
IPE 305	Operations Research	4	4.00
IPE 315	Entrepreneurship Development and Micro Industries	2	2.00
GESL 313	Environment, Sustainability and Law	2	2.00
Total Theoretical		17	17.00
IPE 352	Fluid Mechanics & Machinery Sessional	1.5	0.75
IPE 302	Measurement, Instrumentation and Control Sessional	1.5	0.75
IPE 306	Operations Research Sessional	1.5	0.75
GERM 352	Fundamentals of Research Methodology	4	2.00
Total		8.5	4.25
Sessional			
Grand Term Total		25.5	21.25

Level 3 Term II

Course No.	Course Title	Contact Hour	Credit Hour		
IPE 309	Material Handling and Maintenance	3	3.00		
II L SO	Management		3.00		
IPE 311	Operations Management	3	3.00		
IPE 313	Quality Management	3	3.00		
IPE 319	Data Analytics	2	2.00		
IPE 317	Ergonomics and Safety Management	3	3.00		
IPE 307	Product Design II	3	3.00		
Total		17	17.00		
Theoretical					
IPE 308	Product Design Sessional	1.5	0.75		
IPE 310	Material Handling and Maintenance	1.5	0.75		
11 L 310	Management Sessional	1.5	0.75		
IPE 314	Quality Management Sessional	1.5	0.75		
IPE 318	Ergonomics and Safety Management	1.5	0.75		
IPE 320	Industrial Practice	4 Weeks	1.00		
Total Sessional		6	4.00		
Grand Term		23	21.00		
Total					

Level 4 Term I

Course No.	Course Title	Contact Hour	Credit Hour
IPE 421	Machine Tools	3	3.00
IPE 419	Modeling and Simulation	3	3.00
IPE 415	Project Management	3	3.00
IPE	Optional I	3	3.00
IPE	Optional II	3	3.00
Total		15	15.00
Theoretical			
IPE 400	Final Year Design & Research Project I	6	3.00
IPE 420	Modeling and Simulation Sessional	1.5	0.75
IPE 422	Machine Tools Sessional	3	1.50
IPE 450	Business Communication Seminar	1.5	0.75
Total Sessional		12	6.00
Grand Term Total		27	21.00

Level 4 Term II

Course No.	Course Title	Contact Hour	Credit Hour
IPE 405	Supply Chain Management	3	3.00
IPE 411	CAD/CAM	3	3.00
IPE	Optional III	3	3.00
IPE	Optional IV	3	3.00
Total		1	12.00
Theoretical		2	
IPE 400	Final Year Design & Research Project II	6	3.00
IPE 412	CAD/CAM Sessional	1.	0.75
		5	
IPE 418	Mechatronics and Industrial Automation	1.	0.75
11 12 410	Sessional	5	0.75
TD 4 1 C			4.50
Total Sessional		9	4.50
Grand Term		2	16.50
Total		1	

The grand total credit hours required for the degree of B.Sc. in Industrial and Production Engineering is 160.00.

4.5 List of Optional Courses

Course No.	Course Title	Contact Hour	Credit Hour			
Optional I (I	Manufacturing and Production)	1 12001				
IPE 435	Metal Cutting	3	3.00			
IPE 447	Advanced Material & Process	3	3.00			
IPE 451	Micromanufacturing	3	3.00			
IPE 441	Modern Manufacturing Process	3	3.00			
IPE 439	Green Manufacturing	3	3.00			
Optional II	(Automation and Control)					
IPE 431	Computer Integrated Manufacturing	3	3.00			
IPE 417	Industrial Automation	3	3.00			
IPE 445	Machine Learning	3	3.00			
IPE 427	Control Engineering	3	3.00			
Optional III	(Management)					
IPE 429	Organizational Behavior	3	3.00			
IPE 425	Marketing Management	3	3.00			
IPE 449	Industrial Fire Safety	3	3.00			
IPE 443	Total Quality Management	3	3.00			
Optional IV (Systems Engineering)						
IPE 423	Robotics	3	3.00			
IPE 437	Mechatronics	3	3.00			
CSE 403	Artificial Intelligence	3	3.00			

4.6 List of Courses Offered to Other Departments

Course No.	Course Title	Contact	Credit Hour		
		Hour			
GELM 275	Leadership and Management	2	2.00		
IPE 351	Production Process	4	4.00		
IPE 352	Production Process Sessional	1.5	0.75		
IPE 353	Measurement and Quality Control	3	3.00		
IPE 354	Measurement and Quality Control sessional	1.5	0.75		
IPE 411	CAD/CAM	3	3.00		
IPE 433	Production Planning and control	3	3.00		
IPE 435	Metal Cutting Process	3	3.00		
IPE 441	Modern Manufacturing Process	3	3.00		
IPE 455	Machine Tools & Machining	3	3.00		
IPE 456	Machine Tools & Machining Sessional	1.5	0.75		
IPE 481	Industrial Management	4	4.00		
IPE 485	Operations Research	3	3.00		
IPE 487	Material Handling	3	3.00		

CHAPTER 5

Description of IPE Courses

1.1 Detailed Curriculum of IPE Core Courses

Course Code: IPE 101 Course Name: Introduction to Industrial and Production Engineering

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: Level 1/ Term I

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisite: None

Rationale:

This course is designed to impart the core concepts of industrial and production engineering and incorporate inquisition about different fields of works of industrial and production engineers.

Objectives:

- 1. To share knowledge of what industrial engineers do
- 2. To help students explore how the IP engineers can improve an industrial or a production system
- 3. To show applications of basic industrial engineering tools
- 4. To guide students in differentiating among various production processes
- 5. To introduce students with basic concepts of engineering materials

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain the basic concepts of industrial and production engineering	C1, C2			1	CT
CO2	Sketch and analyze different manufacturing processes	C3, C4	1		1	MT, F, CT
CO3	Apply common IE tools to solve real-life problems	С3	1		1, 2	F, CT, MT
CO4	Define and describe the applications of different engineering materials	C1, C2			1	CT, F
CO5	Assess different production processes and their applications	C3, C5	1		1	ASG, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, CT-Test; PR-Project; Q-Quiz; ASG-Assignment; Pr-Presentation; R-Report; MT-Midterm Exam, F-Final Exam)

Course Contents:

a. Main Contents:

Forecasting, Plant layout, Quality engineering, Production planning and control, Statistics, Computer programming, Lean engineering, Work measurement, Manufacturing, Engineering materials, Solidification processes, Particulate processing, Deformation processes, Material removal process, Material handling and management.

b. Detailed Contents:

Introduction to IPE, Career, Input-Process-Output, Efficiency, Life Cycle of Product, Forecasting - Simple Moving Average, weighted moving average, exponentially weighted moving average; Plant Layout: Line Balancing, cycle time, maximum output, CPM, Locational Economics; Quality Engineering: 7 Tools of Quality, Total Quality Management, ISO 9000, Statistical Process Control, Control chart, Control charts for variables and attributes, Process capability assessment, Six Sigma; Production Planning & Control: Inventory Control - EOQ, ABC analysis, Value Analysis, Scheduling – forward & backward; Statistics - sample & population, sampling, type I, type II error; Computer Programming: CAD/CAM, Computer Integrated Manufacturing, Lean Engineering: 7 wastes, JIT, 5S, Kaizen, Work Measurement: method and time study.

Manufacturing: Definition, Manufacturing industries and products, Manufacturing capabilities, Manufacturing system; Engineering Materials: Classification, Selection of materials, Manufacturing Processes classification; Solidification Processes: Metal Casting, Shaping processes for plastics and polymer matrix composites; Particulate Processing: Pressing and Sintering, Processing of plastics; Deformation Processes: Metal forming, Sheet metal working; Material Removal Process: Machining and part geometry, Turning and related operations, Drilling and related operations, Milling Operations, Shaping and Planning operations; Material Handling and Management: Principles, Unit load, Major Equipment Categories.

Mapping of Course Outcomes and Program Outcomes:

Course Learning Outcomes		Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Project Management and Finance	Life Long Learning
		P01	P02	PO3	P04	P05	P06	P07	P08	P09	PO10	PO11	P012
CO1	Explain the basic concepts of industrial and	٧											

	production engineering							
CO2	Sketch and analyze							
	different manufacturing	٧						
	processes							
CO3	Apply common IE tools to		N					
	solve real-life problems		V					
CO4	Define and describe the							
	applications of different	٧						
	engineering materials							
CO5	Assess different							
	production processes and	٧	٧					
	their applications							

Teaching-learning and Assessment Strategy:

Engagement (hours)
42
-
-
18
21
20
2
3
106

Teaching methodology:Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

Lecture Schedule:

Week	Lecture	Topics	TEST
1	Lec 1	Introduction to IPE, Career, Input-Process-	
		Output	
	Lec 2	Efficiency, Life Cycle of Product	
	Lec 3	Simple Moving Average, weighted moving	
		average	
2	Lec 4	Exponentially weighted moving average	
	Lec 5	Line Balancing, cycle time, maximum output	Class Test 1
	Lec 6	CPM	
3	Lec 7	Locational Economics	

	Lec 8	7 Tools of Quality	
	Lec 9	Total Quality Management, ISO 9000	
4	Lec 10	Statistical Process Control, Control chart, Control charts for variables and attributes.	
	Lec 11	Process capability assessment, Six Sigma	
	Lec 12	Inventory Control - EOQ, ABC analysis	
5	Lec 13	Value Analysis, Scheduling – forward &	
	Lec 14	Sample & population, sampling, type I, type II error	Class Test 2
	Lec 15	CAD/CAM	
6	Lec 16	Computer Integrated Manufacturing	
	Lec 17	7 wastes	
	Lec 18	JIT	
7	Lec 19	5S, Kaizen	
	Lec 20	Method and time study	
	Lec 21	Review class	
8	Lec 22	Manufacturing: Definition, Manufacturing industries and products	
	Lec 23	Manufacturing capabilities, Manufacturing system	
	Lec 24	Engineering Materials: Classification	
9	Lec 25	Selection of materials	Mid Term /
	Lec 26	Manufacturing Processes classification	Project
	Lec 27	Metal Casting	
10	Lec 28	Shaping processes for plastics and polymer matrix composites	
	Lec 29	Pressing and Sintering	
	Lec 30	Processing of plastics	
11	Lec 31	Metal forming	
	Lec 32	Sheet metal working	
	Lec 33	Machining and part geometry	Class Test 3
12	Lec 34	Turning and related operations	Clubb I Cot 5
	Lec 35	Drilling and related operations	
	Lec 36	Milling Operations	
13	Lec 37	Shaping and Planning operations	
	Lec 38	Principles, Unit load	

	Lec 39	Major Equipment Categories	
14	Lec 40		
	Lec 41	Review class	
	Lec 42		

Linkage of Course Outcomes with Assessment Methods and their Weights:

0				0
Asse	ssment Strategi	es	СО	Bloom's Taxonomy
Comp	onents	Grading	20	Bloom's Taxonomy
	Class test 1-3 20% CO 1-3 C 1-4, F		C 1-4, P 1-2	
Continuous Assessment	Class Performance	5%	CO 3, CO5	C3, C5, P 1-2
(40%)	Attendance	5%		
	Mid term	10%	CO 2,3	C 1-4, P 1-2
Final	Exam	60%	CO 1-5	C 1-5, P 1-2
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

- 1. Industrial Engineering & Management Problem and Policies (Ralph M. Barnes)
- 2. Industrial Engineering & Production Management 3rd Edition (2018) (Marland T. Telsang)
- 3. Maynard's Industrial Engineering Handbook (Kjell Zandin, Harold Maynard)
- 4. Introduction to Industrial and Systems Engineering (Wayne C. Turner, Joe H. Mize,

Kenneth E. Case, John W. Nazemtz)

Course Code: IPE 105 **Course Title:** Engineering Materials

Credit Hours: 3.00 Contact Hours: 3.00

Course Curriculum: Outcome Based Education (OBE)

Pre-requisite: None

Rationale:

To conduct in-depth study on atomic structures and bonding, crystallography, phase diagrams, various properties of engineering materials and methods of heat and surface treatments with the objective of laying a strong foundation for core manufacturing courses of program.

Objective:

- 1. To conduct study on atomic and crystal structure of solids.
- 2. To expose the students the defects in crystal structures of solids.
- 3. To study the properties of materials and the testing procedures.
- 4. To expose students to phase diagrams of different binary alloys.
- 5. To conduct study on TTT diagrams to instill understanding of the methods of phase transformation in metallic systems.

- 6. To conduct study on methods of heat and surface treatments.
- 7. To study the properties and applications of metallic and non-metallic materials and alloys.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

-	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain the crystal structures and crystalline dislocations in metals.	C2-C4	1,3	2	1	T, M, F
CO2	Explain the properties of materials and Outline the testing procedures to determine them.	C2-C5	1,3	2	1, 3, 4	T, M, F
CO3	Determine composition and ratios of different phases present binary metallic alloy systems using the respective phase diagrams.	C3-C5	1	2	1, 3	T, M F
CO4	Design cooling rates using TTT diagrams to derive desired combinations of phases in metallic systems.	C3-C5	1,3	2	1, 3, 5	T, M
CO5	Select and explain procedures of different heat and surface treatments of metals.	C2-C5	1	2	1, 3	T, F
CO6	Explain the structures and properties of metals, alloys and composites; and their applications as engineering materials.	C2-C5	1,3	2	1, 3	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; M= Midterm exam; F – Final Exam)

Course Contents:

Introduction: Engineering materials, materials cycle, application and selection criteria of materials.

Structure of solid materials; atomic structure of materials, crystal structure of solids, Miller indices and Bravais space lattices, density, packing factor, defects in crystals and types of defects, solid solutions and dislocations. Crystallographic points, directions, and planes: theory and problem solving. Amorphous structures: types of solids, poly morphism and allotropy.

Phase diagrams: phase diagrams for Binary metallic system completely soluble in liquid and solid states, Binary metallic system completely soluble in the liquid state but completely insoluble in the solid state; Binary metallic system completely soluble in the liquid state but only partially soluble in the solid state; The Eutectoid Reaction; The Iron-Iron Carbide equilibrium diagram; Properties of materials: physical, mechanical, chemical, electrical, semi conducting, magnetic, optical chemical and thermal properties of solids; units and testing.

Engineering materials: Structures and properties of metals and alloys, ceramics, polymers,

rubber, plastics, semiconductors and magnetic materials.

Heat treatment of Steel: Full Annealing; Spheroidizing; Stress-Relief Annealing; Process Annealing; Normalizing; Hardening; Heating temperatures, holding time and Cooling rates in heat treatments. Case Hardening of Steels: Carburizing; Nitriding; Carburbo-Nitriding; Cyaniding; Flame Hardening and Induction Hardening.

Teaching-learning and Assessment Strategy:

Lectures, class performances, assignments, class tests, mid-term exam and final exam

Linkage of CO with Assessment Methods& their Weights:

_	sment Strategie		y cignest	
Components		Gradin	CO	Bloom's Taxonomy
Components		g		
			CO1	C2-C4
			CO2	C2-C5
	Test 1-3	20%	CO3	C3-C5
	16811-3	2070	CO4	C3-C5
			CO5	C2-C5
			CO6	C2-C5
Continuous Assessment (40%)	Class Participatio n	5%	-	-
	Attendance	5%	-	-
	DA: 1.		CO1	C2-C4
		10%	CO2	C2-C5
	Mid term		CO3	C3-C5
			CO4	C3-C5
			CO1	C2-C4
			CO2	C2-C5
Final Exam		60%	CO3	C3-C5
I mai Exam		0070	CO4	C3-C5
			CO5	C2-C5
			CO6	C2-C5
Total Marks		100%		

Mapping of Course Outcomes (CO) and Program Outcomes:

				ı							ı		
Соц	Course Learning Outcomes		Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Project Management and Finance	Life Long Learning
		PO1	P02	PO3	P04	PO5	P06	P07	P08	P09	PO10	PO11	P012
CO1	Explain the crystal structures and crystalline dislocations in metals.	٧	٧										
CO2	Explain the properties of materials and Outline the testing procedures to determine them.	٧	٧										
соз	Determine composition and ratios of different phases present binary metallic alloy systems using the respective phase diagrams.	٧	٧										
CO4	Design cooling rates using TTT diagrams to derive desired combinations of phases in metallic systems.	٧	٧	٧									
CO5	Select and explain procedures of different heat and surface treatments of metals.	٧	٧										

CO6	Explain the s tructures and properties of metals, alloys and composites; and their	٧	V						
	applications as								l
	engineering materials.								

Lectures schedule:

Week	Lecture	Topics	Remarks
Week 1	1	Introduction: Engineering materials, materials cycle,	
WCCK 1	2	Application and selection criteria of materials.	
Week 2	2	Structure of solid materials; atomic structure of	
WCCK 2	3	materials, crystal structure of solids	
	4	Miller indices and Bravais space lattices	CT 1
	5	Packing factor and density	
Week 3	6	Defects in Crystals: types of defects, solid solutions, dislocation.	
Week 4	7	Crystallographic points, directions, and planes: theory and problem solving.	
VV COR I	8	Amorphous structures, types of solids, crystal structure, polymorphism and allotropy	
Week 5	9	Phase diagrams: Phase diagrams: phase diagrams for Binary metallic system completely soluble in liquid and solid states,	
	10	Binary metallic system completely soluble in the liquid state but completely insoluble in the solid state;	CT 2
Week 6	11	Binary metallic system completely soluble in the liquid state but only partially soluble in the solid state; The Eutectoid Reaction;	
	12	The Iron-Iron Carbide equilibrium diagram;	7
Week 7	13	Structures and properties of metals and alloys: Ferrous metals – steel	
	14	Cast iron	
Week 8	15	Non Ferrous metals and alloys,	Midterm
	16	Ceramics	
Week 9	17	Polymers, rubber and plastics	
.,, .,,	18	Semiconductors and magnetic materials.	
Week 10	19	Properties of materials: physical and mechanical	CT 3
	20	Thermal properties of solids	
Week 11	21	Chemical properties	
	22	Electrical, semi conducting properties	
Week 12	23	Magnetic and optical properties	CT 4
	24	at treatment of Steel: Full Annealing; Spheroidizing; Stress-	

		Relief Annealing;	
Week 13	25	at treatment of Steel: Process Annealing; Normalizing; Hardening; Heating temperatures, holding time and Cooling rates in heat treatments.	
Week 15	26	Case Hardening of Steels: Carburizing; Nitriding; Carburbo- Nitriding; Cyaniding; Flame Hardening and Induction Hardening.	
Week 14	27	Case Hardening of Steels: Flame Hardening and Induction Hardening.	
	28	Course Review	

Reference Books:

Text Book:

William D. Callister, *Materials Science and Engineering an Introduction*, John Wily, 5th Edition.

Reference Books:

- **1.** Sidney H Avner, *Introduction to Physical Metallurgy*, Tata Mc Graw Hill Edition, 2nd edition..
- 2. Ashby, M. F.; Jones, D. R. H., *Engineering materials 1: an introduction to properties, applications and design*. Elsevier: 2012; Vol. 1.
- 3. Kakani, S., Material science. New Age International: 2006.
- **4.** Smallman, R. E.; Ngan, A., *Physical metallurgy and advanced materials*. Elsevier: 2011.

Curse Code: IPE 106 Course Title: Engineering Materials Sessional

Credit Hour: 1.50 Contact Hour: 3.00

Course Curriculum: Outcome Based Education (OBE)

Pre-requisite: None.

Rationale:

Laboratory course to learn basic experimental skills and to introduce basic instruments in materials science and engineering. Use of optical, electrical, thermal and mechanical techniques to investigate composition, structure, thermodynamic and kinetic processes of materials. Communicate laboratory findings through written reports and oral presentation.

Objective:

The overall objective of the course is to provide the students with hands-on experience in (1) basic experimental techniques (2) data analysis and (3) writing journal-quality report. Small groups of about 5 to 6 students work as teams in each laboratory session with the reports prepared independently. The main objectives of the course are

1. To learn the principles of materials science and engineering

though lab investigation;

- 2. To learn the basic skills required to properly use materials scienceinstruments;
- 3. To learn to organize the lab results into a logic, concise and accurate report;
- 4. To develop writing and communications skills for a persuasive presentation of technical materials.

Course Outcomes (CO) & Generic Skills:

	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Prepare formal laboratory reports describing the results of experiments	C4-C5		2	1	Pr, R
CO2	Operate basic instruments in materials science and engineering	C3-C6	2	2	1	ASG, R
CO3	Interpret the data from the experiments	C2-C3	1	1	2	ASG

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; PR-Project; PR-Pro

Course Contents:

Name of Experiments:

- 1. Introduction to Metallographic and Metallographic sample specimen preparation.
- 2. Study of Phase diagram.
- 3. Microstudy of steels.
- 4. Study of Heat treatment of Steel-1
- 5. Study of Heat treatment of Steel-2
- 6. Study of Microstudy of Cast iron-1
- 7. Study of Microstudy of Cast iron-2

Teaching-learning and Assessment Strategy:

Class Assessment, Class Participation/Observation, Class Attendance, Lab Exam, Quiz, Viva

Linkage of CO with Assessment Methods& their Weights:

Assessment Method	(100%)
Class Assessme	ent
Class performance	05

Class Attendance	05
Lab Exam	40
Quiz	40
Viva	10

Mapping of Course Outcomes (CO) and Program Outcomes:

Course Learning Outcomes		Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team	Project Management and Finance	Life Long Learning
		PO1	PO2	PO3	PO4	PO5	90d	PO7	PO8	PO9	P010	P011	P012
CO1	Ability to prepare formal laboratory reports describing the results of experiments										✓		✓
CO2	Ability to operate basic instruments in materials science and engineering	✓			√	✓							
CO3	Ability to interpret the data from the experiments		√		√								

Text Books & Ref Books:

1. Lab Manual

2. W.D. Callister, Jr., "Materials Science and Engineering, An Introduction" Wiley

3. Sedney H Avner, "Introduction to Physical Metallurgy"

Course Code: IPE 200 Course Name: Engineering Graphics and CAD sessional

Credit Hour: 1.50 Contact Hour: 3.00

Level/Term: L-2, T-1

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: ME 160 Engineering Drawing

Synopsis/Rationale:

Rationale:

To help students develop skills in the use of computer aided drawing as a tool for visualizing and communicating design intent of components and items using SolidWorks

Objectives:

- 1. To help students create 2D and 3D computer drawings and models for manufacturing and prototyping.
- 2. To develop the skills in students to Evaluate mechanical designs and select the proper access and materials for production.
- 3. To instill the skills to evaluate computer aided design models and assemblies based on critical thinking and problem-solving skills.
- 4. To help them apply design principles and rationale in a realistic and original design project.

Course Outcomes (CO):

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Learn the skills to create and evaluate mechanical designs and select the proper access and materials for production.	C1-C3	2	2	1	Q
CO2	Evaluate computer aided design models and assemblies based on critical thinking and problem-solving skills.		2	2	2	ASG, R Pr, Q
CO3	Apply design principles and rationale in a realistic and original design project.	C3-C6	3	3	3	PR, Pr

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; PR-Prosection; R-Report; PR-Project; PR-Pr

Course Contents:

Introduction to CAD: Introduction to SolidWorks, Interface, Navigation

2D Drawings: 2D Sketch, 2D Sketch Advanced Options

3D Drawings: 3D Sketch, 3D Sketch Advanced Options

Assemblies: Assemblies and different types of mates, Advanced Mates

Engineering Drawing: Creating Engineering, Drawings

Design Evaluation: Stress analysis, Design Analysis, Animation, Motion analysis, Mold Design

Mapping of Course Outcomes and Program Outcomes:

	Course Learning Outcomes	Engineering Knowledge	Problem Analysis	Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Project Management and Finance	Lifelong Learning
		P01	PO2	PO3	P04	PO5	P06	PO7	PO8	P09	PO10	PO11	PO12
CO1	Learn the skills to create and evaluate mechanical designs and select the proper access and materials for production.	✓		√		✓							✓
CO2	Evaluate computer aided design models and assemblies based on critical thinking and problem-solving skills.	✓	✓	√	✓	√					✓		✓

	esign									
principles	and			_						
rationale in a rea	listic	✓	✓	✓	✓			✓	✓	✓
and original de	esign									
project.										

Teaching-learning and Assessment Strategy:

Teaching and learning activities	Engagement (hours)
Face-to-face learning	
Lecture	14
Practical/ Tutorial/ Studio	28
	20
Student-centred learning	-
Self-directed learning	
Non face-to-face learning	0
Revision	30
Assessment preparations	30
Formal Assessment	
Continuous Assessment	14
Final Examination	3
Total	119

Teaching methodology:

Lecture and Discussion, Practical Sessions, Co-operative and Collaborative Method, Problem

Based Method, Project Based Learning

Lecture Schedule:

Week	Lecture	Topics	TEST
1	Lec 1	Introduction to CAD, Introduction to SolidWorks, Interface, Navigation	
2	Lec 2	2D Sketch	P, Quiz 1
3	Lec 3	2D Sketch Advanced Options	
4	Lec 4	3D Sketch	
5	Lec 5	3D Sketch Advanced Options	D 0
6	Lec 6	Assemblies and different types of mates	P, Q
7	Lec 7	Advanced Mates	
8	Lec 8	Project Assignment	D : (
9	Lec 9	Creating Engineering Drawings	— Project
10	Lec 10	Stress analysis, Design Analysis	
11	Lec 11	Animation, Motion analysis	
12	Lec 12	Mold Design	Q, P, PR
13	Lec 13	Project Submission and Presentation	
14	Lec 14	Review	

Linkage of Course Outcomes with Assessment Methods and their Weights:

A	ssessment Strategies	}	СО	Bloom's Taxonomy
Com	ponents	Grading		, and g
	Quiz 1-2	25%	CO 1	C1-C3, P1
			CO 2	C3-C5, P2-P4
Continuous Assessment	Class	5%	CO 1	C1-C3, P2, A1
(40%)	Participation		CO 2	C3-C5, P4, A2
	Project	30%	CO 1	C1-C3, P1
	, and the second		CO 3	C5-C6, P4-P5
Fina	al Quiz	40%	CO 1	C1-C3, P1
	-		CO 2	C3-C5, P4-P5
Tota	l Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

- 1. SolidWorks Manual
- 2. Mastering SolidWorks- Matt Lombard

Course Code: IPE 107 **Course Name:** Engineering Economy

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-2, T-1

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: None

Rationale:

This course is designed to present engineering students the major concepts and techniques of engineering economic analysis that are needed in the decision making process.

Objectives:

- 1. To prepare engineering students to apply knowledge of mathematics and economics in solving engineering problems.
- 2. To expose students to the concepts of inflation, depreciation, taxation etc.
- 3. To develop students' skills in analyzing cash flows in an organization.
- 4. To familiarize students with concepts of time value of money
- **5.** To develop skills in students for effective communication with management and non-engineers.

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain the economic theories, cost concepts and pricing policies.	C2			2	Mid Term
CO2	Apply knowledge of mathematics, economics, and engineering principles to solve engineering problems.	С3	1		2, 4	ASG, T, F
CO3	Solve and Analyze cash flow models in practical situations.	C3, C4	1		2, 4	ASG , T, Mid Term, F
CO4	Evaluate the impact of inflation, taxation, depreciation in financial planning, economic basis for replacement, project scheduling, and legal and regulatory issues.	C5	1,2		2, 4	ASG, F

 $\begin{array}{c} (\text{CP-Complex Problems, CA-Complex Activities, KP-Knowledge Profile, } T-Test \; ; PR-Project \; ; \\ Q-Quiz; \; ASG-Assignment; \; Pr-Presentation; \; R-Report; \; F-Final Exam) \end{array}$

Course Content:

Introduction to engineering economic decision making common to engineering, cash flow analysis and basic concepts of discounting, cost of capital, required ROR equivalence, business mathematics, investment appraisal criteria for economic decisions, present worth, internal rate of return, social consideration in investment, benefit-cost ratio, decisions involving taxes, depreciation

and inflation and sensitivity analysis

Mapping of Course Outcomes (CO) and Program Outcomes:

Course Learning Outcomes		Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Project Management and Finance	Life Long Learning
		P01	P02	PO3	PO4	P05	90d	P07	PO8	P09	PO10	PO11	PO12
CO1	Explain the economic theories, cost concepts and pricing policies	٧											
CO2	Apply knowledge of mathematics, economics, and engineering principles to solve engineering problems	٧	٧										
соз	Solve and Analyze cash flow models in practical situations	٧	٧										
CO4	Evaluate the impact of inflation, taxation, depreciation in financial planning, economic basis for replacement, project scheduling, and legal and regulatory issues that are introduced and applied to economic investment and project-management problems	V	V										

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	40
Revision	20
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	127

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Assignments, Class Tests, Exams, Feedback at every step.

Lecture schedule:

Week 1	Introduction to Engineering Economy	
Class 1	Economics , Resources, Production Possibility Frontier	
Class 2	Engineering Economy, Origins of Engineering Economy, Principles of Engineering Economy	
Class 3	Examples and Problems Related to the Principles of Engineering Economy	
Week 2	Cost Concepts and Design Economics	
Class 4	Cost Estimating, Cost Estimating Approaches, Top Down and Bottom Up Approach, Cash Cost and Book Cost, Sunk Cost and Opportunity Cost	
Class 5	Fixed, Variable, and Incremental Costs, Recurring and Nonrecurring Costs, Life-cycle Cost	CT 1
Class 6	Phases of the Life Cycle and Their Relative Cost, Direct, Indirect and Overhead Costs, Standard Costs, Consumer and Producer Goods and Services	
Week 3	Cost Concepts and Design Economics (Contd.)	
Class 7	Utility, Necessities, Luxuries, and Price Demand, Competition, Cost, Volume, and Breakeven Point Relationships, Economic Breakeven Point	
Class 8	Problems Related to Economic Breakeven Point .	
Class 9	Optimizing a Design with Respect to Cost, A Simplified Cost Function and Examples	
Week 4	Money-Time Relationships and Equivalence	
Class 10	Money, Capital, Types of Capital, Time Value of Money, Origins of Interest, Simple Interest	CT 2
Class 11	Compound Interest, Illustration of Simple vs. Compound Interest, Concept of Equivalence, Notation and Cash-Flow Diagrams and Table	

Class 12	Mathematical Problems Related to Cash Flow Diagram.	
Week 5	Money-Time Relationships and Equivalence (Contd.)	
Class 13	Arithmetic Calculations with Cash Flows	1
Class 14	Arithmetic Calculations with Cash Flows (Contd.)	
Class 15	Deferred Annuities and Mathematical Problems.	
Week 6	Money-Time Relationships and Equivalence (Contd.)	
Class 16	Equivalence Calculations Involving Multiple Interest Formulas	
Class 17	Uniform (Arithmetic) Gradient of Cash Flows	
Class 18	Nominal and Effective Interest Rates and Related Mathematical Problems.	
Week 7	Evaluating a Single Project	
Class 19	Introduction, Determining Minimum Attractive Rate of Return (MARR)	-
Class 20	Present Worth Method, Assumptions of the PW Method, Bond Value	
Class 21	The Capitalized-Worth Method, Future Worth Method	
Week 8	Evaluating a Single Project (Contd.)	
Class 22	Annual Worth Method, Capital Recovery (CR) Amount	CT 3
Class 23	Annual Worth Formula, Internal Rate of Return (IRR) Method.	
Class 24	Installment Financing	=
Week 9	Evaluating a Single Project (Contd.)	=
Class 25	Advantages and Disadvantages of IRR method.	=
Class 26	External Rate of Return (ERR) Method, Payback (Payout) Period Method	
Class 27	Payback (Payout) Period Method (Contd.).	
Week 10	Comparison and Selection among Alternatives	
Class 28	Introduction, Basic Concepts for Comparing Alternatives, Investment and Cost Alternatives	
Class 29	Investment and Cost Alternatives (Contd.), Ensuring a Comparable Basis, The Study (Analysis) Period	
Class 30	Equivalent-Worth Methods, Rate-of-Return Methods	
Week 11	Comparison and Selection among Alternatives (Contd.)	CT 4
Class 31	The Inconsistent Ranking Problem, The Incremental Investment Analysis Procedure	
Class 32	The Incremental Investment Analysis Procedure (Contd.),]
Class 33	Mathematical Problems Related to Equivalent Worth Method, Rate-of-Return Analysis	-
Week 12	Depreciation and Income Taxes	1
L	I .	1

Class 34	Introduction, Depreciation, Concepts Related to Depreciation	
Class 35	The Classical (Historical) Depreciation Methods	
Class 36	Types of Taxes, Before-Tax and After-Tax MARR, Gain (Loss) on Disposal of a Depreciable Tangible Asset, After-tax Economic Analysis	
Week 13	Evaluating Projects with the Benefit/Cost ratio method	
Class 37	Private Versus Public Projects, Benefits, Costs, And Disbenefits, Problems Associated with Multipurpose Projects	
Class 38	Interest Rate Considerations, Benefit / Cost Ratio Method	
Class 39	Criticisms and Shortcomings of Benefit/Cost Ratio Method.	
Week 14	Review	
Class 40	Mathematical Problems Related to Concepts of Engineering Economics	
Class 41	Mathematical Problems Related to Concepts of Engineering Economics (Contd.)	
Class 42	Syllabus Review.	

(PR – Project; ASG – Assignment; PR – Presentation; R - Report; F – Final Exam)

Linkage of Course Outcomes with Assessment Methods and their Weights:

	sment Strate		CO	Bloom's Taxonomy		
Components		Grading	CO	Bloom's Taxonomy		
	Test 1-3	20%	CO 2	C3		
	Test 1-3	2070	CO 3	C3, C4		
	Attenda nce	5%				
Continuous	Class Participa	5%	CO 5	C3		
Assessment	tion					
(40%)	Mid term			CO 1	C2	
			10%	CO 3	C3, C4	
			CO 4	C5		
			CO 2	C3		
Final Exam		60%	CO 3	C3,C3		
Tillai Exalli		00%	CO 4	C5		
			CO 5	C3		
Total Marks		100%				

 $(CO = Course\ Outcome,\ C = Cognitive\ Domain,\ P = Psychomotor\ Domain,\ A = Affective\ Domain)$

Text and Ref Books:

1. Engineering Economy 16th edition: William G. Sullivan, Elin M. Wicks, C. Patrick Koelling.

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-2, T-1

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: None

Synopsis/Rationale:

This Outcome Based Education (OBE) based course is designed to make the student conversant with various aspects of different manufacturing process such as casting and welding and enable them to analyze the interaction between manufacturing process concerns and design decisions.

Objectives:

- 1. To introduce casting processes for ferrous and non-ferrous metals and alloys.
- 2. To expose students to casting defects, design of molds, riser, gates, sprues and core systems.
- 3. To introduce different ceramic and glass product manufacturing processes.
- 4. To introduce different process and petameters in volved in manufacturing of powder metallurgy product.
- 5. To introduce different forming and shaping process used in product manufacturing process.
- 6. To make students familiar with different metal joining processes such as welding process, soldering, brazing and adhesive joining process.

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessm Methods	
	Explain the different steps involved in the					Τ,	Mid
CO1	sand casting process and influence of the	C1-C4	1		1	Term	
	casting parameters on cast product quality					Exam, F	7

CO2	Explain and Compare the different casting processes to produce a given part based on its quality and quantity.	C1-C4	1		1	T, F
CO3	Explain the processes and parameters involved in abrasive machining and in making ceramic and glass products	C1-C4	1		1	T, F
CO4	Explain the processes and parameters involved in manufacturing of powder metallurgy products	C1-C4	1		1	T, Mid Term Exam, F
CO5	Explain different forming and shaping processes and essential parameters involved on these processes.		1	1	3, 6	T, Mid Term Exam, F
CO6	Explain different welding processes and the influence of different parameters involved in these processes.	C1-C4	1	1	3, 6	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; Pr-Presentation; R-Report; $F-Final\ Exam$)

Course Contents:

Classification of manufacturing processes, casting processes for ferrous and non-ferrous metals, sand, die, centrifugal, slush, plaster mold, loam mold, precision investment casting etc.

Casting defects, design of molds, riser, gate sprue and core, cost analysis.

Joining methods: soldering, brazing, welding, conventional welding processes: gas, arc, TIG, MIG, thermit, resistance, friction, electro slag etc. Special welding processes: LASER, electron beam, submerged arc etc. Precision and non-precision surface finishing operation, hot and cold extrusion, press working operations etc. Manufacturing of ceramic and glass products, powder metallurgy.

Mapping of Course Outcomes and Program Outcomes:

Course Learning Outcomes		Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and stainability	Ethics	Communication	Individual and Team Work	Life Long Learning	Project Management and Finance
		P01	P02	PO3	P04	P05	P06	PO7	P08	P09	PO10	PO11	PO12
CO1	Explain the different steps involved in the sand casting process and influence of the casting parameters on cast product quality	1	✓										
CO2	Explain and Compare the different casting processes to produce a given part based on its quality and quantity		✓	√									
CO3	Explain the processes and parameters involved in abrasive machining and in making ceramic and glass products			✓									
CO4	Explain the processes and parameters involved in manufacturing of powder metallurgy products	\		\									
CO5	Explain different forming and shaping processes and essential parameters involved on these processes	\		✓									
CO6	Explain different welding processes and the influence of different parameters involved in these processes	✓		✓									

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	10
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	40
Revision	20
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	137

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Assignments, Class Tests, Exams, Feedback at every step.

Lecture Schedule:

Week	Lecture	Topics	ASSESSMENT
1	Lec 1	Introduction, Engineering materials,	
		Manufacturing Products	
	Lec 2	Classification of manufacturing process, Forging of metals	
	Lec 3	Fundamental of metal casting	
2	Lec 4	Categories of casting process, Sand casting,	
		Sand casting defects	
	Lec 5	Sand molding, Shell molding	
	Lec 6	Investment casting, Permanent mold process	T, Mid Term, F
3	Lec 7	Hot chamber and cold chamber die casting, molds for die casting	
	Lec 8	Centrifugal, Slush, Squeeze, Furnace casting	
	Lec 9	Plaster mold, Loam mold casting and heat treatment	

4	Lec 10	Molding sand and properties, Casting defects	
	Lec 11	Design for casting, Economics of casting	
	Lec 12	Design of molds, riser, gate, sprue and core	
5	Lec 13	Pattern making, Pattern material, types of	
	Lec 14	Pattern allowance, Fillet and core design	
	Lec 15	Introduction, Classification, Types of weld and weld joints, Different welding process	
6	Lec 16	Arc welding process, TIG, MIG	T , F
	Lec 17	Resistance spot welding, resistance seam welding	
	Lec 18	Friction, Forge, Thermit, electro slag welding	
7	Lec 19	Electron beam, Laser beam welding,	
		Submerged arc	
	Lec 20	Robotic welding, Welding defects, Welding	
		profile	
	Lec 21	Gas welding: OAW, OCW, Gas cutting	
8	Lec 22	Precision and non-precision surface finishing	
		operation	
	Lec 23	Principle operation, advantage, limitation and	
		application of brazing	
	Lec 24	Principle operation, advantage, limitation and	
		application of soldering	
9	Lec 25	Sheet metal forming: Cutting operations,	T, Mid Term, F
	Lec 26	Shearing, transfer and progressive dies Sheet metal forming: Bending, Stretch	1, who term, r
		Forming, Deep Drawing	
	Lec 27	Tube bending, Tube-Hydroforming, Explosive forming	
10	Lec 28	Bulk deformation process: Hot and cold	
	Lec 29	extrusion Hydrostatic extrusion, Tube drawing	
	Lec 30		
44		Design recommendations, Extrusion defects	
11	Lec 31	Rolling of metals: Flat rolling, Defects in flat	
		rolling	

	Lec 32	Shape, Ring, Thread, Tube rolling	
	Lec 33	Roll configuration in rolling mills	T, Mid Term, F
12	Lec 34	Steps in Making Powder-Metallurgy Parts,	
		Powder particles, Atomization	
	Lec 35	Mechanical alloying, Bowl Geometries in	
		Blending Metal Powders, Density Variation in	
		Compacting Metal Powders	
	Lec 36	Press for Compacting Metal Powder, Powder	
	Lec 30	Rolling	
13	Lec 37	Spray Deposition, Mechanisms for Sintering	
		Metal Powders, Design Considerations for	
		P/M	
	Lec 38	Characteristics of Ceramics Processing, Dry or	
		semi-dry pressing, hydroplastic forming, Slip	
		casting, doctor blade process	
	Lec 39	Extruding and Jiggering, Float method, Glass	T, F
		tubing and manufacturing	
14	Lec 40	Centrifugal casting of glass, Blowing method,	
		Powder-In-Tube Process	
	Lec 41	Glass fiber drawing method, Plate Glass	
		Drawing Method	
	Lec 42	Review	

(PR – Project; ASG – Assignment; PR – Presentation; R - Report; F – Final Exam)

Linkage of Course Outcomes with Assessment Methods and their Weights:

Assessment Strategies			СО	Dla am'a Tawana						
Components		Grading		Bloom's Taxonomy						
Continuous Assessment (40%)			CO1	C1-C4						
	Test 1-3		CO2	C1-C4						
		20%	CO3	C1-C4						
		2070	CO4	C1-C4						
			CO5	C1-C4						
			CO6	C1-C4						
	Class									
	Participa	5%	-	-						
	tion									
	Attendan	5%	_	_						
	ce									
	Mid term									
			CO 1	C1-C4						
		10%	CO 4	C1-C4						
			CO 5	C1-C4						
			CO1	C1-C4						
			CO2	C1-C4						
Final Exam		60%	CO3	C1-C4						
I mai Exam		0070	CO4	C1-C4						
			CO5	C1-C4						
			CO6	C1-C4						
Total Marks		100%								

Text and Ref Books:

1. Manufacturing, Engineering & Technology, $5^{\rm th}$ Edition, by Serope Kalpakjian and Steven R. Schmid

2. Fundamentals of Modern Manufacturing, 6th Edition, by Mikell P. Groove

Course Code: IPE 202 Course Name: Manufacturing Process-I

Sessional

Credit Hour: 0.75 Contact Hour: 1.50

Level/Term: L-2, T-1

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: Concurrent with IPE 201 Manufacturing

Process I

Synopsis/Rational:

This Outcome Based Education (OBE) based course is designed to enhance ractical knowledge in the field of metal joining and casting methods.

Objectives:

- 1. To study different components and basic operation of lathe machine
- 2. To perform various welding operations by changing different parameters.
- 3. To manufacture a sheet metal job and be introduced with various cold working techniques.
- 4. To conduct a case study on design of a speed gearbox.
- 5. To review the basic principles for the design of casting patterns, feeding system and gating system
- 6. To study metal casting technology and mold making

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods		
CO 1	Explain the working principle of lathe machine	C2-C5	1	2	1	T,Q,R,F		
CO 2	Perform different metal joining and casting process	C4-C6	2	2	1	T,Q,R,F		
CO 3	Explain the comparison among different joining methods	C3-C5	1	1	2	T,Q,R,F		
CO 4	Investigate how the accuracy of the job manufactured can be increased	C3	2	1,2	1	T,Q,R,F		
CO 5	Investigate the main factors affecting the function of pattern design and casting elements	C6, A3	1	1		T,Q,R,F		

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; PR-Project; PR-Pro

Course Contents:

- 1. Study of lathe machine and its operation.
- 2.Study of TIG and MIG welding operation
- 3.Study of design and making of pattern for casting.
- 4.Study of welding joints and welding positions.
- 5. Mold Making, Casting and Assembly of final product

Mapping of Course Outcomes and Program Outcomes:

Course Learning Outcomes				Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and	Ethics	Communication	Individual and Team Work	Project Management and	Life Long Learning
		P01			PO2	P03	P04	PO5	90d	PO7	PO8	PO9	PO10	P011	PO12
CO1	Explain the working principle of lathe machine		✓		✓										
CO2	Perform different metal joining and casting process		✓		✓										
CO3	Explain the comparison among different joining methods		√		✓										
CO4	Investigate how the accuracy of the job manufactured can be increased		✓		✓		✓								
CO5	Investigate the main factors affecting the function of pattern design and casting elements		✓		✓		✓								

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	16
Practical / Tutorial / Studio	16
Student-Centred Learning	10
Self-Directed Learning	
Non-face-to-face learning	40
Revision	10
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	5
Final Examination	1
Total	118

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Exams, Feedback at every step.

Lecture Schedule:

Week 1	Introduction
Class 1	Introduction to manufacturing process sessional
Week 2	Lathe Machine operations
Class 2	Study of lathe machine and its operation.
Week 3	TIG and MIG welding operation
Class 3	Study of TIG and MIG welding operation
Week 4	Welding Parameters
Class 4	Study of welding joints and welding positions.
Week 5	Casting
Class 5	Study of design and making of pattern for casting.
Week 6	Casting (contd.)
Class 6	Mold Making, Casting and Assembly of final product
Week 7	Conclusion
Class 7	Review

 $(PR-Project\ ;\ ASG-Assignment;\ PR-Presentation;\ R$ - Report; F- Final Exam)

Linkage of Course Outcomes with Assessment Methods and their Weights:

Assessr	nent Strategie	es	СО	Bloom's Taxonomy
Compone	ents	Grading	CO	Bloom's Taxonomy
Continuous	Wookly		CO 1	C2-C5
Continuous Assessment		20%	CO 2	C4-C6
(70%)			CO 4	C3
		10%	CO 2	C4-C6

	Class Participa tion		CO 3	C3-C5
			CO 1	C2-C5
	Viva	30%	CO 2	C4-C6
			CO 5	C6, A3
		40%	CO 1	C2-C5
Einal E	~~ ~ ~ ~ ~		CO 2	C4-C6
Final E	xam		CO 4	C3
			CO 5	C6, A3
Total M	Iarks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

- 1. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid
- 2. Fundamentals of Modern Manufacturing, Forth Edition, by Mikell P. Groover

Reference Site:

https://classroom.google.com/ (To be announced)

Course Code: IPE 203 Course Name: Manufacturing Process II

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-2, T-2

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: None

Synopsis/Rationale:

To enable the student to select manufacturing process on the basis of product characteristics.

Objectives:

- 1. To examine the principles associated with different machining process including turning, drilling, planning, milling, grinding etc.
- 2. To analyze the advantages and limitations of each process and its influence on the product finishing
- 3. To interpret the processing sequence for any given product in terms of specification and cost
- 4. To study design of cutting tool and designation of cutting tool within different standards.
- 5. To understand the basic features and methods of plastic manufacturing.

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain major aspects of conventional and non-conventional machining operations.	C1-C4	1		1	T, Mid Term Exam, F
CO2	Compare which machining process is better to produce a given part.	C1-C4	1		1	T, Mid Term Exam, F
СОЗ	Select manufacturing process on the basis of product characteristics and manufacturing economy.	C3, C4	2	1	2	T, Mid Term Exam, F
CO4	Formulate chip reduction coefficient and shear strain for various metal removing process.	C2-C4			1	T, Mid Term Exam, F
CO5	Derive relationship among different velocities during chip formation, proper allowance and pattern design	C2-C4	1			T, Mid Term Exam, F
CO6	Analyze machining economics to achieve maximum production rate.	C2-C4			1	T, Mid Term Exam, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, $T-Test\ ; PR-Project\ ; Q-Quiz; ASG-Assignment; Pr-Presentation; R-Report; F-Final Exam)$

Course Contents:

Classification of manufacturing processes, casting processes for ferrous and non-ferrous metals, sand, die, centrifugal, slush, plaster mold, loam mold, precision investment casting etc.

Casting defects, design of molds, riser, gate sprue and core, cost analysis.

Joining methods: soldering, brazing, welding, conventional welding processes: gas, arc, TIG,

MIG, thermit, resistance, friction, electro slag etc. Special welding processes: LASER, electron beam, submerged arc etc. Precision and non-precision surface finishing operation, hot and cold extrusion, press working operations etc. Manufacturing of ceramic and glass products, powder metallurgy.

Mapping of Course Outcomes and Program Outcomes:

	Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and	Sustainability	Ethics	Communication	Individual and Team Work	Project Management and	Life Long Learning	
		P01	PO2	PO3	P04	P05	90d	PO7		PO8	PO9	PO10	P011	PO12
CO1	Explain major aspects of conventional and non- conventional machining operations.	V	V											
CO2	Compare which machining process is better to produce a given part.	√	√											
CO3	Select manufacturing process on the basis of product characteristics and manufacturing economy.	√	√		V									
CO4	Formulate chip reduction coefficient and shear strain for various metal removing process.	V	V		V									
CO5	Derive relationship among different velocities during chip formation, proper allowance and pattern design	√		$\sqrt{}$	V									
CO6	Analyze machining economics to achieve maximum production rate.	V			√									

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face	
Learning	42
Lecture	10
Practical / Tutorial /	-
Studio Student-Centred	
Learning	
Self-Directed Learning	
Non-face-to-face	40
learning Revision	20
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	137

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Assignments, Class Tests, Exams, Feedback at every step.

Lecture Schedule:

Week	Lecture	Topics	Assessment
1	Lec 1	Introduction, Engineering materials, Fundamentals of	
		Manufacturing, Classification of Manufacturing	
		Processes	
	Lec 2	Introduction to conventional machining, Generating and Forming Shape	
	Lec 3	Basic Turning Operations, Types of lathe, Lathe component, Lathe terminology, CNC Lathe	
2	Lec 4	Reaming, Boring, Broaching Cutting tools for lathe,	
		Lathe centers, Chuck, Collets	ASG, Class
	Lec 5	Drilling and related operations	Test 1, F
	Lec 6	Milling and Related Operations	ŕ
3	Lec 7	Shaping and related operations, Quick return mechanism	

	Lec 8	Planning and related operations	
	Lec 9	Grinding and related Operations	
4	Lec 10	Introduction, AJM, WJM, USM	
	Lec 11	ECM, EDM	
	Lec 12	LBM, EBM	
5	Lec 13	Methods of Machining, Cutting Tool Geometry, Tool- in-hand Nomenclature, Single Point Cutting Tool	
	Lec 14	Designation of Cutting Tools, American Standard Association System (ASA), Orthogonal Rake System (ORS)	
	Lec 15	Interconversion Between ASA and ORS	
6	Lec 16	Interconversion Between ASA and ORS (contd.)	
	Lec 17	Chip Formation, Types of Chips, Chip Forms and	ASG, Class
		Classifications, Chip Formation in Metal Machining, Deformation of Uncut Layer	Test 2, F
	Lec 18	Chip Reduction Coefficient, Velocity Relationships,	
		Shear angle and shear strain	
7	Lec 19	Mechanics of Metal Cutting, Merchant Circle	
		Diagram, Earnest-Merchant Theory	
	Lec 20	Merchant Theory, Lee and Shaffer Theory, Thermal	
		Aspect of Chip Formation	
	Lec 21	Tool Wear, Mechanism of Tool Wear, Tailor Tool Life	
		Equation	
8	Lec 22	Cutting Tool Materials for Machining, Cutting Fluid	
	Lec 23	Machining economics, Process parameter optimization	
	Lec 24	Processing of plastics, Extrusion, Lamination,	
		Thermoforming	
9	Lec 25	Casting, Blow Molding	ACC MIJ
	Lec 26	Compounding, Extrusion, Compression Molding process of plastic manufacturing	ASG, Mid Term, F
	Lec 27	Vacuum forming and hand layup	
10	Lec 28	Injection Molding, Press Parameters, Clamping Mechanism Shaping	

	Lec 29	Injection Molding Defects, Common Polymers				
	Lec 30	Shaping Processes for Thermoplastics and Thermosets				
11	Lec 31	Matrix-Reinforced Plastics, Molding Reinforced				
		Plastics				
	Lec 32	Selection of Manufacturing Process on the basis of				
		product characteristics	ASG, Class			
	Lec 33	Manufacturing of threads and gears	Test 3, F			
12	Lec 34	Slip casting, doctor blade process				
	Lec 35	Extruding and Jiggering, Float method, Glass tubing				
		and manufacturing				
	Lec 36	Centrifugal casting of glass, Blowing method, Powder-				
	Lee 30	In-Tube Process				
13	Lec 37	Bulk deformation,				
	Lec 38	Rolling				
	Lec 39	Sheet metal forging process	ASG, F			
14	Lec 40	Tailor's tool life equation	ASU, I			
	Lec 41 Influence of cutting parameters on tool life					
	Lec 42	Review				

(PR – Project; ASG – Assignment; PR – Presentation; R - Report; F – Final Exam)

Linkage of Course Outcomes with Assessment Methods and their Weights:

Asses	sment Strate	egies	СО	Dlaam's Tayonamy
Components		Grading	(0	Bloom's Taxonomy
			CO 1	C1-C4
	Test 1-3	20%	CO 3	C2-C4
			CO 4	C2
Continuous	Class		CO 2	C3, C4
Assessment (40%)	Participa tion	5%	CO 5	A3
	Mid		CO 1	C1-C4
	term	15%	CO 2	C3, C4
	term		CO 3	C2-C4
			CO 1	C1-C4
Final Exam		600/	CO 2	C3, C4
Fillal Exam		60%	CO 3	C2-C4
			CO 4	C2
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

- 1. Materials and Processes in Manufacturing- E.P. Degarmo, J.T. Black & R.A. Kohser
- 2. Fundamentals of Modern Manufacturing- M.P. Groover
- 3. Processes and Design for Manufacturing- S.D.EI Wakil
- 4. Manufacturing Processes for Engineering Materials- S. Kalpakjian & S. R. Schmid
- 5. Metal Cutting: Theory & Practice A. Bhattacharyya

Reference Site:

https://classroom.google.com/ (To be announced)

Course Code: IPE 204 Course Name: Manufacturing Process II Sessional

Credit Hour: 0.75 Contact Hour: 1.50

Level/Term: L-2, T-2

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: Concurrent with IPE 203 Manufacturing Process II

Synopsis/Rationale:

This Outcome Based Education (OBE) based course is designed to enhance practical knowledge in the field of conventional, non-conventional machining and metal cutting.

Objectives:

- 1. To study different types of chips
- 2. To study and determine tool wear
- 3. To operate milling machine to manufacturing a spur and helical gear
- 4. To conduct a study on different parts and functions of a CNC Milling Machine
- 5. To study the process of resistance spot welding, EDM, Soldering and Brazing

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Determine chip reduction co-efficient and temperature (θ) at chip tool interface	C2-C5	1	2	1	T,Q,R,F
CO2	Examine causes of tool wear and flank wear with time	C4-C6	2	2	1	T,Q,R,F
CO3	Develop G- code for CNC milling operation	C3-C5	1	1	2	T,Q,R,F
CO4	Investigate the impact of different parameters on welding joint.	C3	2	1,2	1	T,Q,R,F
CO5	Determine material removal rate (MRR) and the Wear ratio	C6, A3	1	1		T,Q,R,F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; PR-Project; PR-Pro

Course Contents:

- 1. Study of Chips and Cutting Zone Temperature in Turning Medium Carbon Steel by Uncoated Carbide Insert
- 2. Study and Determination of Tool Wear
- 3. Manufacturing of a Spur and Helical Gear on a Column & Knee Type Milling Machine
- 4. Study of CNC Milling machine.
- 5. Study of Spot Welding Machine.
- 6. Study of Electrical-Discharge Machining (EDM) Process
- 7. Study of Soldering, Brazing operation.

Mapping of Course Outcomes and Program Outcomes:

	Course Learning Outcomes	Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and	Ethics	Communication	Individual and Team Work	Project Management and	Life Long Learning
		P01	P02	P03	PO4	P05	PO6	PO7	PO8	604	PO10	P011	PO12
CO1	Determine chip reduction co-efficient and temperature (θ) at chip tool interface	✓	✓										
CO2	Examine causes of tool wear and flank wear with time	✓	✓										
CO3	Develop G- code for CNC milling operation	✓		✓									
CO4	Investigate the impact of different parameters on welding joint.	√	✓										
CO5	Determine material removal rate (MRR) and the Wear ratio	√			√	✓							

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	16
Practical / Tutorial / Studio	16
Student-Centred Learning	10
Self-Directed Learning	
Non-face-to-face learning	40
Revision	10

Assignment Preparations	20
Formal Assessment	
Continuous	5
Assessment Final	1
Examination	
Total	118

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multi- media Presentation, Class Presentation, Exams, Feedback at every step.

Lecture Schedule:

Week 1	Chip and temperature
Class 1	Study of Chips and Cutting Zone Temperature in Turning Medium
	Carbon Steel by Uncoated Carbide Insert
Week 2	Tool wear
Class 2	Study and Determination of Tool Wear
Week 3	Gear production in milling machine
Class 3	Manufacturing of a Spur and Helical Gear on a Column & Knee Type
	Milling Machine
Week 4	CNC milling machine
Class 4	Study of CNC Milling machine.
Week 5	Spot welding
Class 5	Study of Spot Welding Machine.
Week 6	EDM
Class 6	Study of Electrical-Discharge Machining (EDM) Process
Week 7	Soldering and Brazing
Class 7	Study of Soldering, Brazing operation.

(PR – Project; ASG – Assignment; PR – Presentation; R - Report; F – Final Exam)

Linkage of Course Outcomes with Assessment Methods and their Weights:

Asses	sment Strate	egies	СО	Plaam's Tayonomy
Compor	Components		CO	Bloom's Taxonomy
Cantina	Weeldy		CO 1	C2-C5
Continuous	Weekly Reports	20%	CO 2	C4-C6
Assessment (70%)	Reports		CO 4	C3
(70%)		10%	CO 2	C4-C6
	Class Participa tion		CO 3	C3-C5
			CO 1	C2-C5
	Viva	30%	CO 2	C4-C6
			CO 5	C6, A3
			CO 1	C2-C5
Final Exam		40%	CO 2	C4-C6
		40%	CO 4	C3
			CO 5	C6, A3
Total M	larks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

- 1. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid
- 2. Fundamentals of Modern Manufacturing, Forth Edition, by Mikell P. Groover

Reference Site:

https://classroom.google.com/ (To be announced)

Course Code: IPE 205 **Course Name:** Probability and Statistics

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: Level 2/Term II

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisite: None

Rationale:

With probability and statistics, Industrial & Production Engineers make intelligent decisions to

develop and manage their processes and businesses by finding optimal solution of real-world problems. In this course, students will learn powerful modeling and data analysis techniques for decision-making problems that are used by many successful companies.

Objectives:

- 1. To share basic probability and statistics concepts
- 2. To help students perform basic statistical analysis to explore, visualize and predict situations using data
- 3. To guide students to the applications and analysis of probability distributions
- 4. To make students adept in developing mathematical and computational models of real decision-making problems

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain basic probability and statistics concepts	C1, C2			2	F
CO2	Perform basic statistical analysis to explore, visualize and predict situations using data	C3-C5	1		2,4	T, MT
СОЗ	Apply probability distributions and analyze data for further analysis	C3, C4	1		2,4	T, MT, F
CO4	Develop mathematical and computational modeling of real decision-making problems	C5	1, 2		2,4 ,5	T, F, ASG

(CP – Complex Problems, CA – Complex Activities, KP – Knowledge Profile, T – Test; MT – Mid Term; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

Course Contents:

a. Main Contents:

Introduction to probability, discrete probability distributions, continuous probability distribution, describing data, sampling, hypothesis testing, analysis of variance, regression analysis, design of experiments, non-parametric methods.

b. Detailed Contents:

Introduction to probability: probability, Bayes' rule, random variables, mathematical expectation, variance and covariance of random variables; Discrete probability distributions: binomial distribution, multinomial distribution, negative binomial distribution, hypergeometric distribution, Poisson distribution; Continuous probability distribution: normal distribution, applications of normal distribution, normal approximation to binomial, gamma and exponential distribution, chi-squared distribution; Describing data: graphical presentation, numerical measures, displaying and exploring of data; Sampling: sampling methods, sampling errors, sampling distributions, estimates and confidence interval, t-distribution; Hypothesis testing: procedures for hypothesis testing, one-sample test of hypothesis, two-sample test of

hypothesis; **Analysis of variance:** F-distribution, ANOVA assumptions, ANOVA test, one-way ANOVA, two-way ANOVA; **Regression analysis:** least square principle, simple liner regression, coefficient of correlation and determination, multiple linear regression; **Design of experiments:** experimental designs, randomized block design, factorial design; **Non-parametric methods:** Chi-square distribution; goodness-of-fit test, equal expected frequencies, unequal expected frequency.

Mapping of Course Outcomes (CO) and Program Outcomes (PO):

Co	urse Learning Outcomes	Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Project Management and Finance	Life Long Learning
		P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012
CO1	Explain basic probability and statistics concepts	٧											
CO2	Perform basic statistical analysis to explore, visualize and predict situations using data	v	٧										
CO3	Apply probability distributions and analyze data for further analysis		٧										
CO4	Develop mathematical and computational modeling of real decision-making problems	٧	٧	٧									

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42

Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	40
Revision	20
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	127

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multi-media Presentation, Class Presentation, Assignments, Class Tests, Exams, Feedback at every step.

Lecture Schedule:

Week	Lecture	Topics	TEST
1	Lec 1	Probability	
	Lec 2	Bayes' rule	
	Lec 3	Random variables	
	Lec 4	Mathematical expectation	
2	Lec 5	Variance and covariance of random variables	
	Lec 6		
	Lec 7	Binomial distribution	
	Lec 8		Class Test 1, F
3	Lec 9	Multinomial distribution	, ,
	Lec 10	Negative binomial distribution	
	Lec 11	Poisson distribution	
	Lec 12	Poisson distribution	
4	Lec 13	Hypergeometric distribution	
	Lec 14	N. 1.11 / 11 / 11	
	Lec 15	Normal distribution	
	Lec 16	Normal approximation to binomial	
5	Lec 17	Applications of normal distribution	
	Lec 18	Applications of normal distribution	Class Test 2, F
	Lec 19	Commo and average artial distribution	Class Test 2, I
	Lec 20	Gamma and exponential distribution	
6	Lec 21	Chi squared distribution	
	Lec 22	Chi-squared distribution	
	Lec 23	Combination	
	Lec 24	Graphical presentation	

7	Lec 25	Numerical measures	
	Lec 26	Disabelia and sealaring of late	
	Lec 27	Displaying and exploring of data	
	Lec 28	Sampling methods, Sampling errors	
8	Lec 29		
	Lec 30	Sampling distributions	
	Lec 31		
	Lec 32	Estimates and confidence interval	
9	Lec 33	t-distribution	Mid Term, F
	Lec 34	Procedures for hypothesis testing	
	Lec 35	One-sample test of hypothesis	
	Lec 36	One-sample test of hypothesis	
10	Lec 37	Two-sample test of hypothesis	
	Lec 38	F-distribution	
	Lec 39		
	Lec 40	ANOVA assumptions, ANOVA test	
11	Lec 41	One-way ANOVA	
Lec 42 Lec 43		One way fire vit	
		Two way ANOVA	Class Test 3, F
	Lec 44	Two-way ANOVA	
12	Lec 45		
Lec 46		Least square principle, simple liner regression	
	Lec 47		
	Lec 48	Coefficient of correlation and determination	
13	Lec 49	Multiple linear regression	
	Lec 50	Experimental designs, randomized block design	
	Lec 51	- Factorial design	
	Lec 52	Tactorial design	Class Test 4, F
14	Lec 53	Chi-square distribution,	
	Lec 54	Goodness-of-fit test	
	Lec 55	Equal expected frequencies	
	Lec 56	Unequal expected frequency	

Linkage of Course Outcomes with Assessment Methods and their Weights:

Ass	essment Strategi	es	CO	Bloom's Taxonomy	
Components		Grading	CO	Bloom's Taxonomy	
			CO 2	C3-C5	
Continuous	Test 1-3	20%	CO 3	C3, C4	
Assessment			CO 4	C5	
(40%)	Class	5%	CO 1	C1, C2	
	Participation	3%	CO 3	C3, C4	

	Attendance	5%	-	-
	Mid term	10%	CO 2	C3-C5
	Mid tellii	10%	CO 3	C3, C4
			CO 1	C1, C2
Final Exam		60%	CO 3	C3, C4
			CO 4	C5
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Reference Books:

- 1. Probability and Statistics for Engineers & Scientists Ronald E. Walpole, Raymond
- H. Myers, Sharon L. Myers, and Keying Ye
- 2. Statistical Techniques in Business & Economics Douglas A. Lind, William G. Marchal, and Samuel A. Wathen

Reference Site:

https://classroom.google.com/ (To be announced)

Course Code: IPE 206 Course Name: Probability and Statistics Sessional

Credit Hour: 0.75 Contact Hour: 1.50

Level/Term: L-2, T-II

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: Concurrent with IPE 205: Probability and Statistics

Synopsis/Rationale:

This sessional course, concurrent with IPE 205: Probability and Statistics, follows the Outcome Based Education (OBE) guidelines. The course is designed to teach the students about the fundamentals of quantitative research, and accustom to strategies for data analysis, hypothesis testing, and statistical inference.

Objectives:

- 1. To perform exploratory data analysis using IBM SPSS Statistics software
- 2. To develop and evaluate predictive data analysis models
- 3. To gain insights of the applied aspects of hypothesis testing
- 4. To apply knowledge of probability to solve engineering problem

Course Outcomes (CO) & Generic Skills:

	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Visualize and interpret data to make proper engineering decisions	C4-C5		2	1	Pr, R
CO2	Analyze data to predict their future patterns with significant level of confidence	C3-C6	2	2	1	ASG, R
CO3	Implement the data analysis tools and techniques to test statistical hypothesis	C2-C3	1	1	2	ASG
CO4	Apply the knowledge of both discrete and continuous probability distribution to improve reliability of engineering decision	C3	2	1,2	1	ASG

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

Course Contents:

Name of the experiments:

- 1. Introduction to IBM SPSS Statistics software
- 2. Data visualization using SPSS
- 3. Study of simple linear regression, multiple linear regression, and time series analysis.
- 4. Study of bivariate statistics- ANOVA, t-test, non-parametric and test.
- 5. Study of one-sample and two-sample test of hypothesis
- 6. Study of normal probability distribution

Mapping of Course Outcomes and Program Outcomes:

No. Course Outcomes (CO) of the		Program Outcome												
110.	Course	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	Visualize and interpret data to make proper engineering decisions (PO: 1, 2, 4, 5)	√	✓		✓	✓								
CO2	Analyze data to predict their future patterns with significant level of confidence (PO: 1, 2, 5)	√	✓			✓								
CO3	Implement the data analysis tools and techniques to test statistical hypothesis (PO: 3, 5)			✓		✓								

CO4	Apply the knowledge of both discrete								
	and continuous probability	/		/	1				
	distribution to improve reliability of			•	•				
	engineering decision (PO: 1, 4, 5)								

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	-
Practical / Tutorial / Studio	21
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	14
Revision	14
Assignment/Report Preparations	14
Formal Assessment	
Continuous Assessment	3
Final Examination	_
Total	68

Teaching Methodology:

Lectures, class work, weekly reports, Software based, Problem Based Method, Assignments

Lecture Schedule:

Week 1	Introduction to IBM SPSS Statistics software
Week 3	Data visualization using SPSS
Week 5	Study of simple linear regression, multiple linear regression, and time series analysis.
Week 7	Study of bivariate statistics- ANOVA, t-test, non-parametric and test.
Week 9	Study of one-sample and two-sample test of hypothesis
Week 11	Study of normal probability distribution
Week 13	Final Quiz

Linkage of Course Outcomes with Assessment Methods and their Weights:

Asses	sment Strate	egies	СО	Dlana, a Tayonama
Compo	nents	Grading		Bloom's Taxonomy
	Aggianm		CO 1	C2-C5
	Assignm ent	20%	CO 2	C4-C6
	CIII		CO3	C3
Continuous Assessment (40%)	Class Participa tion	5%	CO 2	C4-C6
	Mid-		CO 1	C2-C5
	term Quiz	15%	CO 2	C4-C6
			CO 1	C2-C5
Final ()niz	60%	CO 2	C4-C6
Fillal	Zuiz	00%	CO 3	C3
			CO 4	C6, A3
Total M	Iarks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

- Probability and Statistics for Engineers & Scientists Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, and Keying Ye
- 2. Statistical Techniques in Business & Economics Douglas A. Lind, William G. Marchal, and Samuel A. Wathen

Reference Site:

https://classroom.google.com/ (To be announced)

Course Code: IPE 243 Course Name: Mechanics of Solids

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-2, T-1

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: None

Rationale:

This course will familiarize students with different kinds of loads and the internal reactions in materials (ductile, brittle,

composite) due to the loads, the concept of stress as a tensor quantity is introduced along with the relevant materials properties which relate it to strain. In addition, various loading conditions.

Objectives:

- 1. Introduction to the calculations concerned with the mechanical properties of materials.
- 2. To characterize and calculate the magnitude of combined stresses in individual members and complete structures.
- 3. To analyze various situations involving structural members subjected to combined stresses by application of Mohr's circle of stress.
- 4. To calculate and analyze the deflection at any point on a beam subjected to a combination of loads

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain the types of loads and stress in different loaded members and development of skills to determine them.	C1-C2			1	T, Mid Term, Final
CO2	Define the characteristics and calculate the magnitude of minimum safe load and stresses to operate individual members and structures without failure.	C1-C3	1		1, 4	Mid Term, F
CO3	Calculate the deflection at any point on a beam subjected to a combination of loads and clear understanding of shear force and bending moment diagram	C3-C4	1		1, 4	T, Mid Term, F
CO4	Analyze various situations involving structural members subjected to combined stresses by application of Mohr's circle of stress.	C4-C5	1,2		1, 4	T, F

 $(CP-Complex\ Problems,\ CA-Complex\ Activities,\ KP-Knowledge\ Profile,\ T-Test\ ;\ PR-Project\ ;\ Q-Quiz;\ ASG-Assignment;\ Pr-Presentation;\ R-Report;\ F-Final\ Exam)$

Course Content:

a. Main Contents:

Stress and strain introduction; Stress analysis; Modulus of elasticity and rigidity; Pressure vessels; Beams; Deflections of beams; Torsion formula and review of torque; Combined stresses and strains; Columns; Introduction to experimental stress analysis and failure; Problem-based applications.

b. Detailed Contents:

1. Stress and Strain introduction: concept of types of loads and internal reaction forces in resisting materials; tensile, compressive and shear stress; axial stress in composites; concept of strain and deformation; stress-strain concept and their inter-relationship for linearly elastic and isotropic materials, stress-strain diagrams for ductile and brittle

materials, elasticity and elastic limits, Young's modulus, material properties from tensile test; introduction to theories of yield;

- **2. Stress analysis**: axially loaded members, statically indeterminate axially loaded members, maximum normal stresses at a cross-section; thermal and centrifugal stresses; concept of stress as tensor quantity, generalized Hooke's Law for 2-D and 3-D stress states and failure under these conditions, graphical representations using stress elements; analysis of elastic behavior of materials under multi-axial loading;
- **3. Modulus of Elasticity and Rigidity:** Definition of important mechanical properties of materials, Poisson's ratio, volumetric strain and bulk modulus; relation between modulus of elasticity and bulk modulus;
- **4. Pressure Vessels:** biaxial stress states due to pressure difference, analysis of bi-axial stresses occurring in thin-walled pressure vessels; stresses in thick walled cylinders and spheres, graphical representation of the distributions of these stresses across vessel's skin thickness; initial yield and plastic collapse in pressure vessels;
- **5. Beams:** types of beam supports (simply supported, cantilevered, fixed ends); pure bending and normal stress, transverse loading and shear stress; mixed loading conditions, shear force and bending moment diagrams; various types of stresses in beams: i.e. bending, torsion, shear etc.; Flexure formula, stress variation in a rectangular cross-section for positive and negative bending moments; curved beams and hooks, concept of the Neutral Axis.
- **6. Deflection of beams:** integration and area moment methods; shearing stress and deflection in continuous and composite beams, introduction to reinforced concrete beams and slabs;
- **7. Torsion formula and review of torque:** torsional stress, angle of twist of solid and hollow shafts; torsional stiffness and equivalent shaft, modulus of rupture; helical springs;
- **8. Combined stresses and strains:** concept of combined loading, principal stress and principal planes, combined axial and bending stresses, stress at a point, stress on inclined cutting planes, analytical method for the determination of stresses on oblique section; Mohr's Circle and its application in combined loading problems; transformation of strain components, strain rosette;
- **9. Columns:** concept of axial and eccentric loading of columns, introduction to elastic stability, Euler's formula, slenderness ratio and classification of columns, intermediate column formulas, the Secant formula; concept of buckling and bracing; critical load for columns with different end conditions, total maximum stress for a column with initial curvature;
- **10. Introduction to experimental stress analysis and failure:** introduction to techniques; strain energy; stress concentration due to geometric features, brittle fracture, crack growth under repeated or cyclic loading, fatigue, failure theories; 11. Problem-based applications: using basic Finite Element Analysis (FEA) principles of computation for simple FEA model development in aerospace, mechanical, naval and biomedical engineering; results interpretation and validation

Mapping of Course Outcomes (CO) and Program Outcomes:

Course Learning Outcomes	Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and	ironn	Sustainability Ethics	Communication	Individual and Team Work	Project Management and Finance	Life Long Learning	
--------------------------	-----------------------	------------------	-----------------------------------	---------------	-------------------	------------------	-------	--------------------------	---------------	-----------------------------	-----------------------------------	--------------------	--

		P01	PO2	P03	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	P012
CO1	Explain the types of loads and stress in different loaded members and development of skills to determine them.	./	/										
CO2	Define the characteristics and calculate the magnitude of minimum safe load and stresses to operate individual members and structures without failure.	/	/										
CO3	Calculate the deflection at any point on a beam subjected to a combination of loads and clear understanding of shear force and bending moment diagram	✓	/										
CO4	Analyze various situations involving structural members subjected to combined stresses by application of Mohr's circle of stress.	/	1										

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	40
Revision	20
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	127

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multi-media Presentation, Class Presentation, Assignments, Class Tests, Exams, Feedback at every step.

Lecture schedule:

Week	Lectur e	Topics	Remarks
Week 1	1	Stress analysis: statically indeterminate axially loaded member	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	Stress analysis: statically indeterminate axially loaded member	
Week 2	3	Axially loaded member	CT 1
	4	Axially loaded member	
Week 3	5	Thermal and centrifugal stresses	
	6	Thermal and centrifugal stresses	
Week 4	7	Stresses in thin and thick walled cylinders and spheres	
	8	Stresses in thin and thick walled cylinders and spheres	
Week 5	9	Beams: Shear force and bending moment diagrams; various types of stresses in beams	
.,, 55=25	10	Beams: Shear force and bending moment diagrams; various types of stresses in beams	
	11	Beams: Shear force and bending moment diagrams; various types of stresses in beams	CT 2
Week 6	12	Beams: Shear force and bending moment diagrams; various types of stresses in beams	
Week 7	13	Flexural formula; Deflection of beams: integration and area moment methods	
WCCK 7	14	Flexural formula; Deflection of beams: integration and area moment methods	
Week 8	15	Introduction to reinforced concrete beams and slabs	Midterm
, , cell 6	16	Introduction to reinforced concrete beams and slabs	1,114,001,111
Week 9	17	Torsion formula; Angle of twist; Modulus of rupture	
	18	Torsion formula; Angle of twist; Modulus of rupture	
Week 10	19	Helical springs	CT 3
	20	Helical springs	
Week 11	21	Combined stresses: principal stress, Mohr's Circle	
	22	Combined stresses: principal stress, Mohr's Circle	
Week 12	23	Columns: Euler's formula, intermediate column formulas, the Secant formula	
	24	Columns: Euler's formula, intermediate column formulas, the Secant formula	CT 4
Week 13	25	Flexure formula of curved beams. Introduction to experimental stress analysis techniques	

26	Flexure formula of curved beams. Introduction to experimental stress analysis techniques	
27	Strain energy; Failure theories	

COURSE INFORMATION						
	28	Strain energy; Failure theories				
		Text Book:				
		1. A Textbook of Strength of Materials – R K Bansal				
		2. Mechanics of material with solved problems A C Mandal & M. Quamrul Islam, published by IUT, OIC, 2011				
Reference Books		3. Strength of Materials (4th edition) – Andrew Pytel, Ferdinand L. Singer.				
		4. Strength of Materials – Beer and Johnston.				
		5. Mechanics of Materials (10th edition) - R. C. Hibbeler				
		6. A Textbook of Strength of Materials - R.S. Khurmi				

Linkage of Course Outcomes with Assessment Methods and their Weights:

Assessment Strateg Components		gies	СО	Bloom's Taxonomy
		Grading	CO	Bloom's Taxonomy
			CO1	C1-C2
	Test 1-3	20%		
	1050 1-3	2070	CO3	C3, C4
G :	_		CO4	C4-C5
Continuous	Attendance	5%		
Assessmen t (40%)	Class Participation	5%		
			CO1	C1-C2
	Mid term	10%	CO2	C1-C3
			CO3	C3, C4
			CO1	C1-C2
Final Exam		60%	CO2	C1-C3
Tillai Exalli		0070	CO3	C3, C4
			CO4	C4-C5
Total Marks		100%	·	

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Course Code	: IPE 244	Lecture Contact Hours	: 1.50
Course Title	: Mechanics of Solids Sessional	Credit Hours	: 0.75

PRE-REQUISITE

IPE 243

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

his is the foundation unit in the study of structures. By applying the knowledge gained in Statics and combining it with the concepts gained in Materials Technology the students are introduced to fundamental theories and techniques required to analyze the state of stress and strain in structural members subjected to external loads. This knowledge will allow students to perform the engineering calculations required to ensure that a structural member meets strength, stiffness and stability requirements.

OBJECTIVE

- 1. Students will be able to instill a basic knowledge of the statistical aspects of mechanics of materials.
- 2. Develop the formal theory of solid mechanics: the equilibrium, kinematic, and constitutive equations.
- 3. Introduce the atomistic mechanisms underlying the mechanical behavior of materials.
- 4. Establish process structure property performance relationships in materials engineering.

LEARNING OUTCOMES & GENERIC SKILLS

No.		Correspondin g PO	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
	Apply the fundamentals of Solid Mechanics.	1	С3			1	R, Q, LT

CO2	Analyze the fundamentals of stresses and strains.	1	C4		1	R, Q, LT
CO3	Identify and express the principles of Solid Mechanics in obtaining the solutions for applications in real life engineering problems.	2	C3		5	R, Q, LT
CO4	Identify and express the principles of Solid Mechanics in design problems.		C3		3	R, Q, LT

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, LT – Lab Test, PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Experiments:

- 1) a. Study and calibration of Universal Testing Machine (UTM)
 - b. Tensile Test of mild steel specimens.
- 2) Hardness test of metal specimen.
- 3) Impact test of metal specimen.
- 4) Support reaction of a point loaded for a simple supported beam.
- 5) Column test of a mild steel specimen.

СО-РО	MAPPING													
No.	Course Learning Outcome			PF	ROG	RA	Μ(OU'	ГСО	MES	(PO)			
		1	2	3	4	5	6	7	8	9	10	11	12	

CO1	Apply the fundamentals of Solid Mechanics	✓						
CO2	Analyze the fundamentals of stresses and strains.	✓						
CO3	Identify and express the principles of Solid Mechanics in obtaining the solutions for applications in real life engineering problems.		✓					
CO4	Identify and express the principles of Solid Mechanics in design problems.			✓				

Justification	for CO-PO mapp	ing:
Mapping	Corresponding Level of matching	Justifications
CO1-PO1	3	In order to identify the basics of solid mechanics, the knowledge of engineering fundamental would be required.
CO2-PO1	3	In order to perform the experiments, the fundamental knowledge of stress strain would be required
CO3-PO2	2	In order to solve the solid mechanics problems, the knowledge of engineering fundamentals is also required.
CO4-PO4	3	For performing the experiments, design problems are needed in this laboratory.

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	14
Practical	28
	tal 42
Self-Directed Learning	
Preparation of Lab Reports	10
Preparation of Lab Test	10
Preparation of presentation	5
Preparation of Quiz	10
Engagement in Group Projects	20
Formal Assessment	
Continuous Assessment	14
Final Quiz	1
Total	112

TEACHING METHODOLOGY

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

COURSE	COURSE SCHEDULE					
Week-1	Introduction class					
Week-3	Exp 1: a. Study and calibration of Universal Testing Machine (UTM) b. Tensile Test of mild steel specimens.					

Week-5	Exp 2: Hardness test of metal specimen.
Week-7	Exp 3: Impact test of metal specimen.
Week-9	Exp 4: Support reaction of a point loaded for a simple supported beam.
Week-11	Exp 5: Column test of a mild steel specimen.
Week-13	Quiz/Test, Viva

	Components	Grading
Continuous	Lab participation and Report	30%
Assessment (60%)	Labtest-1, Labtest-2	30%
	Lab Quiz	40%
	Total Marks	100%

REFERENCE BOOKS

- 1. Strength of materials (4th edition) William Nash, Publisher Mcgraw-hill International Editions, Schaum's Outline Series.
- 2. Mechanics of material with solved problems A C Mandal & M. Quamrul Islam 2011.
- 3. Strength of Materials (4th edition) Andrew Pytel, Ferdinand L. Singer.
- 4. Strength of Materials Beer and Johnston.
- 5. Strength of Materials E. P. Popov.
- 6. Mechanics of Solids Laboratory Practice- A.C. Mandal & M.Q. Islam

Course Code: IPE 251 **Course Name:** Thermodynamics and Heat Transfer

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-2, T-2

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: None

Rationale:

This course explores all fundamental laws of Thermodynamics and use them to evaluate the effectiveness of different air standard and steam cycles. It also delves into the principles of heat and its conversion into power, providing comprehensive coverage of energy and its transfer. It encompasses various topics such as power generation, refrigeration, and the relationship between properties of substances.

Objective:

- 1. To introduce students in analyzing air standard cycles, such as reciprocating piston engines and gas turbine engines, and vapor power cycles, such as those used in power plants and refrigeration units.
- 2. To provide students with a comprehensive understanding of various thermodynamic properties, the laws governing thermodynamics, and the limitations associated with them.
- 3. To develop understanding of the concepts of enthalpy, entropy, availability and irreversibility etc.
- 4. To make students familiar with fundamental heat transfer concepts: conservation of energy, mechanisms of energy conversion, and mechanisms of heat transfer (conduction, convection, and radiation)
- 5. To familiarize students with thermal circuit analysis for engineering systems and calculations for conduction, convection, and radiation thermal resistances.

Course Outcomes (CO):

	(00)	Bloom's				
		1				
		ax				Assessment
No.	Course Learning Outcome	О	СР	CA	KP	Metho
INO.	Course Learning Outcome	n	CF	CA	Kr	•
		О				ds
		m				
		y				

CO1	Explain the Zeroth, First, Second and Third Laws of thermodynamics, and use the laws of thermodynamics to solve a variety of problems, such as the expansion of gases and the efficiency of heat engines.	C1-C3	1		1,3	T, Mid Term Exam
CO2	Analyze efficiency and properties of thermodynamic cycles for heat engines, refrigerators and heat pumps and other important mechanical devices.	C4, C5	1,2		1,3	F, Mid Term Exam
CO3	Apply the first and second laws to examine the behaviour of internal combustion engines (air–standard cycles), Carnot cycle, Brayton cycle, Ericsson cycle, Rankine power cycles (basic, regeneration, reheat), combined powerplant cycles and Vapor pressure refrigeration cycles.	C3, C5	1,2		1,3	T, F
CO4	Apply the 1D and 3D heat transfer equations involving conduction, convection, and radiation, and solve for the heat transfer and thermal resistance rate.	C3, C5	1,3	3	1,3	T, Mid Term Exam, F
CO5	Identify, formulate, and solve engineering problems involving forced convection heat transfer, and natural convection heat transfer.	C2, C3, C6	1,3	3	1,3	F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; Pr-Presentation; R-Report; $F-Final\ Exam$)

Course Contents:

a. Main Contents: Introduction to Thermodynamics; First law of thermodynamics; Pure substances; Second law of thermodynamics; Perfect gases; Thermodynamics relations and cycles; Vapor power cycles; Refrigeration cycle; Conductive heat transfer; Convective heat transfer; Radiation heat transfer; Heat exchangers.

b. Detailed Contents:

- **1. Introduction to Thermodynamics:** Definition and the calculus of thermodynamics; Fundamental concepts: thermodynamic system and control volume, classes of systems, thermodynamic properties, flow and non-flow processes, reversible and irreversible processes, constant volume, constant pressure, isothermal, adiabatic, polytrophic and isentropic processes, thermodynamic equilibrium; Zeroth law of thermodynamics;
- **2. First Law of Thermodynamics:** Energy and energy transfer, total energy of a system, concept of temperature and heat, thermodynamic temperature scale; heat and work, modes of work; concept of continuum, macroscopic approach; property, state, path and process; determination of the state of a

system from given properties; non-flow energy equation; internal energy, specific heat capacities, relation between specific heats; enthalpy: concept of ideal and real gases; law of conservation of energy; corollaries of first law; application in thermodynamic systems: closed, open and isolated; steady flow energy equation and its applications;

- **3. Pure Substances:** Definition and properties of pure substances; phase changes; single component phase equilibrium (vaporization, melting, sublimation); p-T, p-v, T-s and h-s diagrams; triple point and critical point; tables of thermodynamic properties of steam; Mollier diagram;
- **4. Second Law of Thermodynamics:** Limitation of the first law of thermodynamics; concept of entropy and exergy analysis; Kelvin, Planck and Clausius statements of second law; heat engines and heat pumps; Corollaries of the 2nd law; efficiencies of reversible engines; temperature-entropy diagrams for gases and vapors, entropy changes for a perfect gas for reversible processes; energy analysis: control mass and control volume systems;
- **5. Perfect Gases:** Ideal and real gases, equation of the state of a perfect gas; internal energy, enthalpy and specific heat capacities of a perfect gas; coefficient of volume expansion and isothermal compressibility for a perfect gas; reversible processes of perfect gas; perfect gas mixtures; Gibbs-Dalton law; relations involving pressure, volume and composition; internal energy, enthalpy and specific heats of gaseous and gas-vapour mixtures;
- **6. Thermodynamics Relations and Cycles:** Carnot cycle; gas power cycles; ideal cycles; Otto cycles, Diesel cycle, Brayton cycle; p-v and T-s diagrams of cycles;
- 7. Vapor Power Cycles: Rankine cycle; Reheat cycle; calculations of cycle efficiency;
- **8. Refrigeration Cycle:** Simple vapor compression refrigeration cycle; p-h and T-s diagrams; Actual cycle and its analysis; study of compressor, condenser, expansion device and evaporator in refrigeration systems; efficiency and COP; Psychrometrics;
- **9. Conductive heat transfer:** General conduction equation; steady-state conduction, unsteady-state conduction, conduction-convection systems, convection boundary conditions; straight fins of rectangular and triangular profiles;
- 10. Convective heat transfer: Natural convection heat transfer; Heat and momentum transfer associated with laminar and turbulent flows of fluids in forced convection; dimensional analysis of forced and natural convections; Velocity and thermal boundary layer developments over flat plate and through tubes (ducts), Thermal Boundary Layer, Relation Between Fluid Friction and Heat Transfer, Turbulent-Boundary-Layer; General methods for estimation of convective heat transfer coefficient; Reynolds and Nusselt Numbers for heat transfer rate;
- **11. Radiation heat transfer:** Laws of radiation heat transfer; blackbody and gray body emissions; radiactive properties of surfaces; radiation shape factor; radiation interchange between two surfaces;
- **12. Heat exchangers:** Basic types, Log Mean Temperature Difference (LMTD) of concentric tube heat exchangers, temperature profiles for different configurations and operating parameters of concentric tube heat exchangers; exchanger effectiveness-NTU relations; techniques of heat transfer augmentation; heat exchanger devices;

Teaching-learning and Assessment Strategy:

Lectures, class performances, class tests, midterm and final exam.

Linkage of CO with Assessment Methods& their Weights:

Asses	sment Strate	egies	CO	Dloom's Toxonomy
Components		Grading	CO	Bloom's Taxonomy
Continuous			CO1	C1-C3
Assessment	Test 1-3	20%	CO3	C3, C5
(40%)			CO4	C3, C5

	Class Participa tion	5%	-	-
	Attendan ce	5%	-	-
	Ma		CO1	C1-C3
	Mid	10%	CO2	C3, C4
	term		CO4	C4, C5
			CO2	C3, C4
E. 1E		600/	CO3	C3, C5
Final Exam		60%	CO4	C3, C5
			CO5	C2, C3, C6
Total Marks		100%		

Mapping of Course Outcomes (CO) and Program Outcomes:

	Course Learning Outcomes	Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Project Management and Finance	Life Long Learning
		P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012
CO1	Explain the Zeroth, First, Second and Third Laws of thermodynamics, and use the laws of thermodynamics to solve a variety of problems, such as the expansion of gases and the efficiency of heat engines.	٧	٧										
CO2	Analyze efficiency and properties of thermodynamic cycles for heat engines, refrigerators and heat pumps and other important mechanical devices.	٧											
CO3	Apply the first and second laws to examine the behaviour of internal combustion engines (airstandard cycles), Carnot cycle, Brayton cycle, Ericsson cycle, Rankine power cycles (basic, regeneration, reheat), combined powerplant	٧	٧										

	cycles and Vapor pressure refrigeration cycles.							
CO4	Apply the 1D and 3D heat transfer equations involving conduction, convection, and radiation and solve for the heat transfer and thermal resistance rates.	٦/	٧					
CO5	Identify, formulate, and solve engineering problems involving forced convection heat transfer and natural convection heat transfer.		٧					

Lectures schedule:

Week	Lectur	Topics	Remarks
VV CCII	e		1 Cinding
	1	Definition and the calculus of thermodynamics; Fundamental concepts: thermodynamic system and control volume.	
Week 1	2	Thermodynamic properties, flow, and non-flow processes; reversible and irreversible processes, constant volume, constant pressure, isothermal, adiabatic, polytropic, and isentropic processes; thermodynamic equilibrium; Zeroth law of thermodynamics	
W. 1.2	3	Energy and energy transfer, total energy of a system, concept of temperature and heat, thermodynamic temperature scale; heat and work, modes of work.	CT 1
Week 2	4	Macroscopic approach; property, state, path and process; determination of the state of a system from given properties; non-flow energy equation; internal energy, specific heat capacities, relation between specific heats.	
Week 3	5	Enthalpy: concept of ideal and real gases; law of conservation of energy; corollaries of first law;	
	6	Application in thermodynamic systems: closed, open and isolated; steady flow energy equation and its applications.	
Week 4	7	Definition and properties of pure substances; phase changes; single component phase equilibrium (vaporization, melting, sublimation).	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8	p-T, p-v, T-s and h-s diagrams; triple point and critical point; tables of thermodynamic properties of steam; Mollier diagram.	
Week 5	9	Limitation of the first law of thermodynamics; concept of entropy and exergy analysis;	CT 2
	10	Kelvin, Planck and Clausius statements of second law; heat engines and heat pumps	
Week 6	11	Corollaries of the 2nd law; efficiencies of reversible engines; temperature-entropy diagrams for gases and vapors.	

idterm
CT 3
CT 4

	Text I	Book:					
	1.	Thermodynamics: An Engineering Approach - Yunus A. Cengel, Michael A. Boles					
	2. Heat and Mass Transfer, Fundamentals & Applications – Yunus A. Cengel, Afshin J. Ghajar.						
	3.	3. Heat and Mass Transfer - R.K. Rajput					
Reference Books	Refere	ence Books:					
DOOKS		Fundamentals of Engineering Thermodynamics-Michael J. Moran & Howard N. Shapiro					
	2.	Thermal Engineering-Mahesh M. Rathore					
	3. Fundamental of Heat & Mass Transfer – Frank Incropera.						
	4.	Heat Transfer – J. P. Holman					

COURSE INFORMATION

Course Code : IPE 252 Lecture Contact Hours : 1.50 Course Title : Thermodynamics & Heat Transfer Sessional Credit Hours : 0.75

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

Thermodynamics sessional deals with the relations between heat and other forms of energy such as mechanical, electrical, or chemical energy. In this course, students will learn and apply a range of thermodynamic laws and principles so that they can analyze a given thermodynamic problem (such as the combustion of fuels to release heat and energy, and the translation of this release of energy into movement) and discuss operational features of various thermodynamic systems and components.

This course enables students to apply the understanding of heat transfer mechanisms such as conduction, convection and radiation for understanding the performance of various heat transfer equipment such as heat exchangers, condensers, boilers, evaporators etc. used in almost all industries.

OBJECTIVE

- 1. Students will be able to apply thermodynamic laws and principles to the analysis of processes, cycles and thermodynamic hardware
- 2. They will explain and investigate the laws and principles of thermodynamics and use to solve problems

- 3. They can solve thermodynamics problems by appraising given information, determining which concepts apply, and then provide and verify an appropriate solution
- 4. They will learn to use basic tools to design process operations involving heat transfer.

LEARNING OUTCOMES & GENERIC SKILLS

	MINITO OCTOONED & GENERA	TC DIMEED					
No.	Course Outcome	Correspond ing PO	Bloom's Taxonom y	СР	CA	KP	Assessment Methods
CO 1	Apply thermodynamic laws and principles to the analysis of processes, cycles and thermodynamic hardware	1	СЗ			1	R, Q, LT
CO ₂	Analyze and investigate the laws and principles of thermodynamics and use to solve problems	1	C4			1	R, Q, LT
CO 3	Solve thermodynamics problems by appraising given information, determining which concepts apply, and then provide and verify an appropriate solution	2	C3			5	R, Q, LT
CO 4	Analyze heat transfer by conduction, convection and radiation.	1	C4			4	R, Q, LT
CO 5	Analyze and calculate heat and mass transfer in complex systems involving several heat transfer mechanisms	2,3	C4			5	R, Q, LT

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, LT – Lab Test, PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Experiments:

- 1) (a) Determination of flash point of liquid gel
 - (b) Study of sling psychrometer
- 2) Viscosity test of liquid substance
- 3) Study and calibration of pressure gauge by dead weight tester
- 4) (a)Concept of pressure and pressure sensor behavior
 - (b) Study of different Speed Measuring devices

- 5) Determination of thermal conductivity of a metal by steady state method
- 6) Study of heat transfer by radiation and convection
- 7) Study of heat exchanger

CO-PO MAPPING

		PROGRAM OUTCOMES (PO)											
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	1 1	12
CO1	Apply thermodynamic laws and principles to the analysis of processes, cycles and thermodynamic hardware	√											
CO2	Analyze and investigate the laws and principles of thermodynamics and use to solve problems	✓											
CO3	Solve thermodynamics problems by appraising given information, determining which concepts apply, and then provide and verify an appropriate solution		✓										
CO4	Analyze heat transfer by conduction, convection and radiation.		✓										
CO5	Analyze and calculate heat and mass transfer in complex systems involving several heat transfer mechanisms			✓									

Justification for CO-PO mapping:

Mapping	Corresponding Level of matching	Justifications
CO1-PO1	3	In order to identify the basics of thermodynamic tools and equipment, the knowledge of engineering fundamental would be required.
CO2-PO1	3	In order to perform the experiments, the law of thermodynamics knowledge would be required

CO3-PO2	2	In order to solve the thermodynamics problems, the knowledge of engineering fundamentals is also required.			
CO4-PO2	3	In order to analyze heat and mass transfer in complex systems problem analysis skills are required.			
CO5-PO3	2	To analyze and calculate heat transfer in complex syst ems involving several heat transfer mec nisms design and development of solutions is required.			

TEACHING LEARNING STRATEGY					
Teaching and Learning Activities Engagement (ho					
Face-to-Face Learning					
Lecture	14				
Practical	28				
	Total 42				
Self-Directed Learning					
Preparation of Lab Reports	10				
Preparation of Lab Test	10				
Preparation of presentation	5				
Preparation of Quiz	10				
Engagement in Group Projects	20				
Formal Assessment					
Continuous Assessment	14				
Final Quiz	1				
Total	112				

TEACHING METHODOLOGY

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

COURSE	COURSE SCHEDULE						
Week-1		Expt-01: (a) Determination of flash point of liquid gel					
	(b) Study of sling psychromet	er					
Week-3	Expt-02: Viscosity test of liquid substa	nce					
Week-5	Expt-03: Study and calibration of press	ure gauge by dead weight tester					
Week-7	Expt-04: (a)Concept of pressure and pressure sensor behavior						
	(b) Study of different Speed Measuring	devices					
Week-9	Expt-05: Determination of thermal con	ductivity of a metal by steady state method					
Week-11	Expt-06: Study of heat transfer by radia	ation and convection					
Week-13	k-13 Expt-07: Study of heat exchanger						
Week-14 Quiz Test							
	Components Grading						

Components	Grading

Continuous Assessment	Lab participation and Report	30%
(60%)	Labtest-1, Labtest-2	30%
Lab Quiz		40%
	Total Marks	100%

REFERENCE BOOKS

- 1. Thermodynamics: An Engineering Approach Yunus A. Cengel, Michael A. Boles
- 2. Fundamentals of Engineering Thermodynamics- Michael J. Moran & Howard N. Shapiro.
- 3. Fundamentals of Thermodynamics R E Sonntag, C. Borgnakke, G J. Van Wylen.
- 4. Heat and Mass Transfer, Fundamentals & Applications Yunus A. Cengel, Afshin J. Ghajar.
- 5. Heat Transfer Laboratory Practice-A.C. Mandal & M.Q. Islam

Course Code: IPE 271 Course Name: Engineering Mechanics & Mechanics of

Machinery

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-2, T-2

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: None

Rationale:

To familiarize students with the principles of static equilibrium by applying Newton's laws of motion to solve engineering problems. Topics incorporate an introduction to forces, 2D equilibrium of particles and rigid bodies, the center of gravity and centroids, friction, analysis of truss structures, and moments of inertia.

Objective:

- 1. To familiarize students with the "Free Body Diagrams" of real-world problems and apply Newton's Laws of motion and vector operations to assess the equilibrium of particles and bodies.
- 2. To apply the principles of equilibrium of particles and bodies to analyze the forces in planar truss members and structures.
- 3. To expose students to the concepts of center of gravity, centroids and moment of inertia and apply the concepts to compute their location for bodies of arbitrary shape
- 4. To familiarize students with the basic kinematics concepts displacement, velocity and acceleration (and their angular counterparts)
- 5. To familiarize students with the application of other basic dynamics concepts the Work-Energy principle, Impulse-Momentum principle and the coefficient of restitution

Course Outcomes (CO):

No.	Course Learning Outcome	Bloom's Taxonom y	СР	C A	K P	Assessment Methods
CO1	Explain the force systems of planar truss members, structures	C1-C2	1		1, 3	F
CO2	Determine location of center of gravity, centroids and moment of inertia of bodies of arbitrary shape.	C3, C5	1		1, 3	T, F
CO3	Apply fundamental concepts of kinematics and kinetics of particles and rigid bodies to the analysis of simple, practical problems.	C2, C3	1	3	1, 3	T, Mid Term Exam, F
CO4	Develop the capacity to predict the effects of force and motion while carrying out the creative design functions of engineering.	C2, C3, C6	1		1, 3, 5	Mid Term Exam
CO5	Explain gears and gear trains and solve different problems of gear trains, cams, and dynamometer.	C2, C3, C5	1,3		1, 3, 5	T, Mid Term Exam, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; PR-Presentation; R-Report; PR-Presentation; PR-Presentat

Course Contents:

a. Main Contents: Basic concepts of mechanics; Properties of forces; Analysis of structures; Equilibrium of rigid bodies; Statical determinacy; Power transmission; Moments of inertia; Kinematics; Mechanisms; Cams and cam followers.

b. Detailed Contents:

- **1. Basic concepts of mechanics:** Free body diagrams; statics of particles and rigid bodies; centroids of lines, areas (planar areas, composite areas) and volumes;
- **2. Properties of forces:** Concurrent / coplanar / non-coplanar force systems, resultant of forces, resolution of forces, rectangular and polar components of forces in plane and 3-D space;
- **3. Analysis of structures:** Forces in trusses, frames and machines, zero force members; forces in cables; friction;
- **4. Equilibrium of rigid bodies:** Conditions for maintaining equilibrium in 2 and 3-D;
- **5. Statical determinacy:** Identification of known forces and solution of unknown reactions for a structure, combined loads, application of equilibrium equations for statical determinacy
- **6. Power transmission:** By belts and ropes, analysis of slippage (dry friction)

- **7. Moments of inertia:** Of areas and masses; moments of force in vector notation; equivalent force system; parallel-axis theorem for determination of rotational inertia about a different axis; polar moments of inertia; couples and resultant of force-couple systems; principal axes and principal moments of inertia;
- **8. Kinematics:** Kinematics of particles; Kinetics of particles: Newton's second law; energy and momentum method; System of particles; Kinematics of rigid bodies; Plane motion of rigid bodies: forces and acceleration; Energy and momentum methods; Velocity and acceleration in mechanism.
- **9. Mechanisms:** Turning moment: inertia and kinetic energy of reciprocating and rotating parts; Static and dynamic balancing: reciprocating and rotating parts, multi-cylinder in-line and V-engines, radial engines, and opposed-piston engines; Balancing machines.
- **10. Study of cams and cam followers;** Clutches and brakes; Dynamometers; Study of gears and gear trains; Gyroscope; Principles and applications.

Teaching-learning and Assessment Strategy:

Lectures, class performances, class tests, midterm and final exam.

Linkage of CO with Assessment Methods& their Weights:

0			neir weights:	T
	ssment Strategi	es Grading	CO	Bloom's Taxonomy
Components	Components			•
			CO2	C3, C5
	Test 1-3	20%	CO3	C2-C3
			CO5	C2, C3, C5
Continuous Assessment	Class Participation	5%	-	-
(40%)	Attendance	5%	-	-
	Mid term	10%	CO3	C2-C3
			CO4	C2, C3, C6
			CO5	C2, C3, C5
			CO1	C1-C2
Final Exam		60%	CO2	C3, C5
Tillal Exalli		00%	CO3	C2-C3
			CO5	C2, C3, C5
Total Marks		100%		

Mapping of Course Outcomes (CO) and Program Outcomes:

Course Learning Outcomes		Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Project Management and	Life Long Learning
		P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	PO12
CO1	Explain the force systems of planar truss members, structures	٧	٧										
CO2	Determine location of center of gravity, centroids and moment of inertia of bodies of arbitrary shape.												
CO3	Apply fundamental concepts of kinematics and kinetics of particles and rigid bodies to the analysis of simple, practical problems.		٧										
CO4	Develop the capacity to predict the effects of force and motion while carrying out the creative design functions of engineering		٧										
CO5	Explain gears and gear trains and solve different problems of gear trains, cams, and dynamometer.		٧										

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	10
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	40
Revision	20
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	137

Lectures schedule:

Week	Lectur	Topics	Remarks
	e		
	1	Free body diagrams; statics of particles and rigid bodies	
Week 1	2	Free body diagrams; statics of particles and rigid bodies	
Week 2	3	Centroids of lines, areas (planar areas, composite areas) and volumes;	
	4	Centroids of lines, areas (planar areas, composite areas) and volumes;	CT 1
Week 3	5	Concurrent / coplanar / non-coplanar force systems, resultant of forces, resolution of forces, rectangular and polar components of forces in plane and 3- D space;	
	6	Concurrent / coplanar / non-coplanar force systems, resultant of forces, resolution of forces, rectangular and polar components of forces in plane and 3- D space;	
Week 4	7	Forces in trusses, frames and machines, zero force members; forces in cables; friction;	
,,, ,, ,,	8	Forces in trusses, frames and machines, zero force members; forces in cables; friction;	
Week 5	9	Conditions for maintaining equilibrium in 2 and 3-D	
	10	Conditions for maintaining equilibrium in 2 and 3-D	
Week 6	11	Identification of known forces and solution of unknown reactions for a structure, combined loads, application of equilibrium equations for statical determinacy	CT 2
	12	Identification of known forces and solution of unknown reactions for a structure, combined loads, application of equilibrium equations for statical determinacy	
Week 7	13	Power transmission by belts and ropes, analysis of slippage (dry friction)	
VV CCR 7	14	Power transmission by belts and ropes, analysis of slippage (dry friction)	
Week 8	15	Moments of inertia of areas and masses; moments of force in vector notation; equivalent force system; parallel-axis theorem for determination of rotational inertia about a different axis;	Midterm
VICEN U	16	Moments of inertia of areas and masses; moments of force in vector notation; equivalent force system; parallel-axis theorem for determination of rotational inertia about a different axis;	· Mutti
Week 9	17	Polar moments of inertia; couples and resultant of force- couple systems; principal axes and principal moments of inertia;	CT 3
	18	Polar moments of inertia; couples and resultant of force- couple systems; principal axes and principal moments of	

		inertia;			
Week 10	19	Kinematics of particles; Kinetics of particles: Newton's second law; energy and momentum method; System of particles; Kinematics of rigid bodies;			
W COLL IS	20	Kinematics of particles; Kinetics of particles: Newton's second law; energy and momentum method; System of particles; Kinematics of rigid bodies;			
Week 11	21	Plane motion of rigid bodies: forces and acceleration; Energy and momentum methods; Velocity and acceleration in mechanism.			
	22	Plane motion of rigid bodies: forces and acceleration; Energy and momentum methods; Velocity and acceleration in mechanism.			
Week 12	23	Turning moment: inertia and kinetic energy of reciprocating and rotating parts; Static and dynamic balancing: reciprocating and rotating parts, multi-cylinder in-line and V-engines, radial engines, and opposed-piston engines; Balancing machines			
	24	Turning moment: inertia and kinetic energy of reciprocating and rotating parts; Static and dynamic balancing: reciprocating and rotating parts, multi-cylinder in-line and V-engines, radial engines, and opposed-piston engines; Balancing machines	CT 4		
Week 13	25	Study of cams and cam followers; Clutches and brakes; Dynamometers;			
WCCK 13	26	Study of cams and cam followers; Clutches and brakes; Dynamometers;			
Week 14	27	Study of gears and gear trains; Gyroscope; Principles and applications			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	28	Study of gears and gear trains; Gyroscope; Principles and applications			
		Text Book:			
		4. Engineering Mechanics Statics (10th Edition)— R.C. Hibbeler			
		5. Engineering Mechanics Dynamics (10th Edition)—R.C. Hibbeler.			
Reference Books		6. Theory of Machines (S. I. Units) – R. S. Khurmi, J. K. Gupta, Publisher – Eurasia Publishing house (Pvt) Ltd.			
		Reference Books:			
		5. Vector Mechanics for Engineers: Statics—Ferdinand P. Beer, E Russell Johnston, Jr; Publisher – McGraw-Hill Companies, 5th edition 1988.			

6. Vector Mechanics for Engineers: Dynamics – Ferdinand P. Beer, E Russell Jr. Johnston Engineering Mechanics, Statics and Dynamics – Joseph F Shelley	
7. Mechanics of Machines (Advanced theory and examples) 2nd edition (SI units) – John Hannah and R. C. Stephens.	

Course Code: IPE 301 **Course Name:** Measurements, Instrumentation and Control

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-3, T-1

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: None

Rationale:

To Develop understanding to collaborate the mechanical instrumentation & control system knowledge with electrical measurement concepts.

Objective:

- 1. To familiarize students with the basic system models, control, and measurement system models.
- 2. To educate students on the techniques of conducting a case study that focuses on developing an accurate model utilizing the model-reference system.
- 3. To expose students to the methods of calculation and measurement of efficiency level of control system elements.
- 4. To familiarize students with the logic and programming language utilized in control system.

Course Outcomes (CO):

Upon completion of the course, the students will be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain the principles, techniques and instruments used in engineering measurement.	C1-C3	1		1, 2, 3	T, Mid Term Exam, F
CO2	Perform calibration of measuring instruments to reduce error in engineering measurement.	C1-C4	1, 2		3, 6	T, F
CO3	Apply the working principle of different types of mechanical and electrical controllers in resolving real-life issues regarding industrial control and automation systems.	C1- C4	1, 2		3, 4	T, Mid Term Exam, F

CO4	Analyze the logic and programming language utilized in control and automation process.	C1-C4	1		3, 4	T, F			
`	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)								

Course Content:

Introduction to fundamentals of engineering measurements, study and use of instrumentation, and control systems. Linear measuring system, instruments limits, fits and gauges: ISO system of limits and fits.

Instrument Types and Performance Characteristics. Measurement Uncertainty, Sensor and Transducer Technologies. Calibration of Measuring Sensors and Instruments. Sensors for measuring stress, strain, pressure, temperature, position, velocity etc. Generalized measurement systems, Temperature, Humidity, Pressure, Flow, Stress-Strain, Vibration, Translational and Rotational Motion.

Precision dimensional measurement of length and angles, roundness profiles and flatness, surface roughness and texture, wear Taylor's principles on limit gauges, Abbey's principle, measuring threads, gears, measurement, ultrasonic measurement, measurement by light-wave interference, electrical and electronic measurement, digital recording by LASER beam dimension measuring system, opto-electronic, dimensional gauging, non-destructive testing methods (NDT methods), inspection and kinds of inspection, dynamic measurement.

The characteristics and use of analogue and digital instrumentation applicable to industrial engineering problems, statistical methods for developing system specifications, basic concepts of modern instrumentation.

Different types of Actuators. hydraulic, pneumatic, electrical etc;

Control Action and Industrial Automatic Controls; Classification of control systems: Concepts and importance of control system, control system description, state variable and transfer function representation, sensitivity, concepts of the feedback control system, electromechanical controls, digital computer control.

Proportional (P), Proportional Derivative (PD), Proportional Integral (PI) and Proportional Integral Derivative (PID) Controllers: Data Acquisition and Signal Processing and Signal Transmission. Operational amplifiers, digital-to-analog converter, analog-to-digital converter etc.; Signal conditioning techniques using Wheatstone bridge;

Programmable Logic Controller-components, inputs, outputs and programming with Ladder Diagram; Hydraulic, Pneumatic, electrical and electronics Control systems

Mapping of Course Outcomes (CO) and Program Outcomes:

	Course Learning Outcomes	Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Life Long Learning	Project Management and Finance
		P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012
CO1	Explain the principles, techniques and instruments used in engineering measurement.	٧	٧			٧							
CO2	Perform calibration of measuring instruments to reduce error in engineering measurement.	٧				٧							
CO3	Apply the working principle of different types of mechanical and electrical controllers in resolving reallife issues regarding industrial control and automation systems.	٧				٧							
CO4	Analyze the logic and programming language utilized in control and automation process.	٧											

(H – High, M- Medium, L-low)

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	10
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	40
Revision	20
Assignment Preparations	20

Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	137

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Assignments, Class Tests, Exams, Feedback at every step.

Lecture schedule:

	ASSESSMENT	
Introduction		
Introduction to fundamentals of	ASG, Class	
engineering measurements	Test 1, F	
Basic concept of instrumentation		
Basic concept of instrumentation		
Types of instruments		
Performance Characteristics of instruments		CT 1
Performance Characteristics of instruments		
Basic Structures of Sensors and transducers.		
Working principles of different types of	ASG, Class	
sensors	Test 2, F	
Working principles of different types of transducers		
Measurement error		
Calibration of instruments		CT 2
Reduction of systematic errors		C1 Z
Reduction of systematic errors		
	Introduction to fundamentals of engineering measurements Basic concept of instrumentation Basic concept of instrumentation Types of instruments Performance Characteristics of instruments Performance Characteristics of instruments Basic Structures of Sensors and transducers. Working principles of different types of sensors Working principles of different types of transducers Measurement error Calibration of instruments Reduction of systematic errors	Introduction Introduction to fundamentals of engineering measurements Test 1, F Basic concept of instrumentation Basic concept of instrumentation Types of instruments Performance Characteristics of instruments Performance Characteristics of instruments Basic Structures of Sensors and transducers. Working principles of different types of sensors Test 2, F Working principles of different types of transducers Measurement error Calibration of instruments Reduction of systematic errors

Class 14	Different measurement systems		
Class 15	Pressure measurement systems		
Week 6	System models		
Class 16	Pressure measurement systems		
Class 17	Temperature measurement systems	ASG, Mid	
		Term, F	
Class 18	Temperature measurement systems		
Week 7			
Class 19	Flow measurement systems		
Class 20	Flow measurement systems		
Class 21	Humidity measurement systems		
Week 8		ASG, Class	
		Test 3, F	
Class 22	Stress-Strain measurement systems		
Class 23	Translational and rotational measurement systems		CT 3
Class 24	Translational and rotational measurement systems		
Week 9			
Class 25	Temperature and process controller		
Class 26	Proportional (P), Proportional Derivative (PD), Proportional Integral (PI), PID controller		
Class 27	Proportional (P), Proportional Derivative (PD), Proportional Integral (PI), PID controller		
Week 10			
Class 28	Feedback control system	ASG, F	
Class 29	Electromechanical controls		
Class 30	Digital computer control		CT 4
Week 11			C1 4
Class 31	Data Acquisition and Signal Processing and Signal Transmission.		
Class 32	Operational amplifiers, digital-to- analog converter, analog-to-digital		

	converter etc.;		_
Class 33	Signal conditioning techniques using		
	Wheatstone bridge;		
Week 12			
Class 34	Basic Pricipal and application of PLC		
Class 35	Basic Stucture of PLC		
Class 36	Basic Stucture of PLC		
Week 13			
Class 37	Programming of PLC		
Class 38	Programming of PLC		
Class 39	Programming of PLC		
Week 14			
Class 40	Hydraulic Control systems		
Class 41	Pneumatic Control systems		
Class 42	Electrical and electronics Control		
	systems		

(PR – Project; ASG – Assignment; PR – Presentation; R - Report; F – Final Exam)

Linkage of Course Outcomes with Assessment Methods and their Weights:

Asses	sment Strate	egies	- CO	Dlaam's Tayanamy
Components		Grading		Bloom's Taxonomy
			CO 1	C1-C4
	Test 1-3	20%	CO 3	C2-C4
			CO 2	C2
Continuous Assessment (40%)	Class		CO 2	C3, C4
	Participa tion	5%	CO 3	A3
	Mid	15%	CO 1	C1-C4
			CO 2	C3, C4
	term		CO 3	C2-C4
			CO 1	C1-C4
Final Exam		60%	CO 2	C3, C4
Filiai Exaili	Finai Exam		CO 3	C2-C4
			CO 2	C2
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Reference Books:

- 1. W.Bolton, *Industrial control and instruentation*, Longman Scientific & Technical.
- 2. J. P. Holman, Publisher, Experimental Methods for Engineers (6th edition), Mc Graw Hill Inc.
- 3. ThomasG.Beckwith, RoyD. Marangoni, John H. Lientar, Mechanical Measurements (5th edition).

Course Code: IPE 302 Course Name: Measurements and

Instrumentation Sessional

Credit Hour: 0.75 Contact Hour: 1.50

Level/Term: L-3, T-1

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: Concurrent with IPE 301 Measurements and

Instrumentation

Rationale:

To create the opportunity to have the full knowledge of electrical control system and mechanical engineering.

Objective:

- 1. To expose students to different mechanical and electrical instrumentation system along with their applicability.
- 2. To conduct detailed study on the applicability of computer based digital control technique, through electronic and electric interfaces, to mechanical engineering problems.
- 3. To introduce the various tools used in electrical and mechanical machines and their performance.

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	C P	CA	KP	Assessment Methods
CO 1	Differentiate mechanical and electrical system along with their applicably	C2-C5	1	2	1	T,Q,R,F
CO 2	Derive expressions for computer based digital control technique through electronic and electric interfaces, to mechanical engineering problems	C4-C6	2	2	1	T,Q,R,F
CO 3	Explain with reference to tools used in electrical and mechanical machines and their performance.	C3-C5	1	1	2	T,Q,R,F

 $(CP-Complex\ Problems, CA-Complex\ Activities, KP-Knowledge\ Profile,\ T-Test\ ;\ PR-Project\ ;\ Q-Quiz;\ ASG-Assignment;\ Pr-Presentation;\ R-Report;\ F-Final\ Exam)$

Course Content:

Sessional work based on course IPE 301.

Mapping of Course Outcomes (CO) and Program Outcomes:

Course Learning Outcomes				Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and	Sustainability	Ethics	Communication	Individual and Team Work	Life Long Learning	Project Management and
	P01	P02	P03	P04	P05	90d	PO7		P08	P09	PO10	P011	P012	
CO1	Differentiate mechanical and electrical system along with their applicably	✓		✓				✓						
CO2	Derive expressions for computer based digital control technique through electronic and electric interfaces, to mechanical engineering problems		✓			√								
CO3	Explain with reference to tools used in electrical and mechanical machines and their performance.	✓			✓									

Teaching-learning and

Assessment Strategy: Lab performances, Lab Report/Assignment/Presentation, Lab Test/Quiz

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	16
Practical / Tutorial / Studio	16
Student-Centred Learning	10
Self-Directed Learning	
Non-face-to-face learning	40
Revision	10
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	5
Final Examination	1
Total	118

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Exams, Feedback at every step.

Linkage of Course Outcomes with Assessment Methods and their Weights:

Assess	sment Strate	egies	СО	Bloom's Taxonomy
Compor	nents	Grading	j	
	Weekly	20%	CO 1	C2-C5
	Reports		CO 2	C4-C6
Continuous	Class		CO 2	C4-C6

Assessment (70%)	Participa tion	10%	CO 3	C3-C5
	Viva	30%	CO 1	C2-C5
			CO 2	C4-C6
	•		CO 1	C2-C5
Final E	xam	40%	CO 2	C4-C6
			CO 3	C6, A3
Total M	Iarks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text & Reference Books:

- 1. W.Bolton, Industrial control and instrumentation, Longman Scientific & Technical.
- 2. J. P. Holman, Publisher, Experimental Methods for Engineers (6 th edition), Mc Graw Hill Inc.
- 3. ThomasG.Beckwith, RoyD. Marangoni, John H. Lientar, Mechanical Measurements (5 th edition).

Course Code: IPE 303 Course Name: Product Design I

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-3, T-1

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: (1) IPE 105: Engineering Materials

(2) IPE 107: Engineering Economy(3) ME 160: Engineering Drawing(4) IPE 243: Mechanics of Solids

(5) IPE 271: Engineering Mechanics and Theory of Machines

Synopsis/Rationale:

This Outcome Based Education (OBE) based course, with its co-requisite laboratory sessional IPE 304, is part of a series of two courses IPE 303 and IPE 307 (Product Design II) designed to

introduce students to the systematic engineering approach to developing new/re-designed products of utility. It emphasizes economic, functional, aesthetic, market-demand etc. factors involved in successful product design. In addition environmental and human aspects are highlighted. The unique combination of theory and hands-on sessional work engenders, among the students, the concept of sustainable, ethical and economic design of useful engineering products for societal benefit.

Objectives:

- 1. To analyze functional characteristics of a product to be designed
- 2. To design and assess solutions to existent complex problems and societal needs
- 3. To analyze the societal and environmental impacts of a designed product or service
- 4. To critically review extant literature and case studies in order to explicate product, process or service failure, and suggest remedies
- 5. To develop and demonstrate ethical judgment based on moral principles

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO 1	Interpret and explain the functional aspects and characteristics of a product using the basic principles of science and engineering.	C1-C4	1		1	T, Mid Term Exam, F
CO 2	Propose optimum design solutions to complex mechanical engineering problems and assess their viability in terms of societal, economic and environmental benefits.	C3, C4	1		1	ASG, Mid Term Exam, F
CO 3	Review and analyze the impact of engineering products, processes or services on society and environment by applying knowledge of	C2-C4	2	1	2	ASG, Mid Term Exam, F
	engineering, basic economic analysis and environmental science.					
CO 4	Review practical engineering case studies from extant literature to identify probable effective solutions to posed problems and explain reasons of failure in engineering design.				1	T, ASG, R, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; Pr-Presentation; R-Report; $F-Final\ Exam$)

Course Contents:

Functional Aspects: product functionality, environment and human factors in design, value engineering, design morphology, quality function development, understanding customer needs, establishing product function specification, specification development, concept generation and evaluation.

Industrial Product Development: The process of product development, Product planning, Managing customer and technical specifications, Revision of product concept development materials selection. **Product** architecture development. Product Rendering techniques: sketching and editing, Applied design with model building, Advanced solid modeling and surface modeling in 3D-CAD and SolidWorks, Simulation of mechanical movement, animation, photo rendering, top-down-design and generating drawings. Mechanical Design and Failure Analysis: Designing of machine elements: Temporary and Permanent joints; Screw and nut-bolt joints, welding and soldering; Strength analysis of joints, Design and analysis of clamps and fixtures, Design and analysis of power and line shafts, bearings, supports, Design and analysis of power and line shafts, bearings, supports, Keys and coupling design and analysis, Gear and power-train design, Categorization and analysis of failure types: tensile, brittle, fatigue etc., Analysis of product failure and stress concentrations

Mapping of Course Outcomes and Program Outcomes:

	pping of course outcome		8										
Course Learning Outcomes		Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Project Management and Finance	Life Long Learning
		PO1	P02	P03	P04	P05	90d	P07	P08	P09	PO10	PO11	PO12
CO1	Interpret and explain the functional aspects product using the basic principles of science and engineering. (PO: 1)	٧											
CO2	Propose optimum design solutions to complex mechanical engineering problems and assess their viability in terms of societal,		٧	V		٧					٧		

CO3	economic and environmental benefits. (PO: 2, 3, 5, 10) Review and analyze the impact of engineering products, processes or services on society and environment by applying knowledge of engineering, basic economicanalysis		٧		√	v			
CO4	and environmental science. (PO: 2, 6, 7) Review practical engineering case studies from extant literature to identify probable effective solutions to posed problems and explain reasons of failure in engineering design. (PO: 1, 2, 4, 11, 12)	٧	٧	V				√	V

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	40
Revision	20
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	127

Teaching Methodology

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Visualization using Computer Simulations, Assignments, Class Tests, Exams, Feedback at every step.

Week	Lecture	Topics	ASSESSMENT
1	Lec 1	Introduction: Functional aspects of a product,	
	Lec 2	environment and human factors in design, value	
	Lec 3	engineering	
2	Lec 4	Design morphology, quality function	
	Lec 5	development, understanding customer needs	Class Test 1, ASG
	Lec 6		
3	Lec 7	Establishing product function specification,	
	Lec 8	specification development	
	Lec 9		
4	Lec 10	Concept generation and evaluation	
	Lec 11		
	Lec 12		
5	Lec 13	Industrial product development: The process of	
	Lec 14	product development, Product planning,	
	Lec 15	Managing customer and technical	
		specifications	
6	Lec 16	Revision of product concept development and	Class Test 2, ASG,
	Lec 17	materials selection, Product architecture	PR
	Lec 18	development.	
		Product Rendering techniques: sketching and	
		editing	
7	Lec 19	Applied design with model building, Advanced	
	Lec 20	solid modeling and surface modeling in 3D-	
	Lec 21	CAD	
		Review for Mid-term Exam	
8	Lec 22	Designing of machine elements: Temporary	
	Lec 23	and Permanent joints; Screw and nut-bolt	
	Lec 24	joints, welding and soldering; Strengthanalysis	
		of joints	
9	Lec 25	Design and analysis of clamps and fixtures	
	Lec 26		
	Lec 27		Mid Term
10	Lec 31	Design and analysis of power and line shafts,	
	Lec 32	bearings, supports	
	Lec 33	0-7	
11	Lec 28	Keys and coupling design and analysis, Gear	
	Lec 29	and power-train design	
	Lec 30		Class Test 3, ASG,
	LCC 50		Class I est 3, Abd,

12	Lec 34	Categorization and analysis of failure types:	R, PR, F
	Lec 35	tensile, brittle, fatigue etc.	
	Lec 36		
13	Lec 37	SolidWorks designing and Simulation of	
	Lec 38	mechanical movement, animation, photo	
	Lec 39	rendering, top-down-design and generating	
		drawings.	
		Analysis of product failure and stress	
		concentrations	
14	Lec 40	Reporting and presentation of preliminary	
	Lec 41	product ideas using multi-media resources and	
	Lec 42	simulation	
		Review for Final Exam	

(PR – Project; ASG – Assignment; PR – Presentation; R - Report; F – Final Exam)

Linkage of Course Outcomes with Assessment Methods and their Weights:

Asses	sment Strate	egies	СО	Dlaam's Tayonomy
Components		Grading	CO	Bloom's Taxonomy
			CO 1	C1-C4
	Test 1-3	20%	CO 3	C2-C4
			CO 4	C2
Continuous	Class		CO 2	C3, C4
Assessment (40%)	Participa tion	5%	CO 5	A3
	Mid	15%	CO 1	C1-C4
			CO 2	C3, C4
	term		CO 3	C2-C4
			CO 1	C1-C4
Einel Even		60%	CO 2	C3, C4
Filiai Exaili	Final Exam		CO 3	C2-C4
			CO 4	C2
Total Marks		100%		

 $(CO = Course\ Outcome,\ C = Cognitive\ Domain,\ P = Psychomotor\ Domain,\ A = Affective\ Domain)$

Text and Ref Books:

- a) Fundamentals of Mechanical Component Design Kenneth S. Edwards, Robert B. McKee
- b) Shigley's Mechanical Engineering Design Richard Budynas, Keith Nisbett
- c) Operations Research

Reference Site:

https://classroom.google.com/ (To be announced)

Course Code: IPE 307Course Name: Product Design-II

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-3, T-2

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: (1) IPE 105: Engineering Materials

(2) IPE 107: Engineering Economy

(3) ME 160: Mechanical Engineering Drawing

(4) IPE 243: Mechanics of Solids

(5) IPE 271: Engineering Mechanics and Theory of Machines

(6) IPE 303: Product Design-I

Synopsis/Rationale: In this course, student will get the opportunity to learn practical knowledge about different machine elements used in wide range of engineering applications.

Objectives:

- 1. to acquire knowledge about different types of stress conditions in machine elements.
- 2. to understand the mechanical and material failures related to different machine elements used in engineering applications.
- 3. to gain knowledge about the function of different machine elements such shaft, gear, brake systems etc. used in engineering applications.
- 4. to develop design skills of these machine elements.

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain the mechanical and material failures of different machine elements used in product design.	C1-C3	1		2, 3	T, Mid Term Exam, F
CO2	Explain the function of different machine elements such as shaft, gear, brake, belt-pulley etc. in industrial applications.	C1-C3	1		3	T, F
СОЗ	Explore the application of different machine elements for new product development.	C2-C4	2	2	3, 6	T, Mid Term Exam, F
CO4	Design machine elements based on product development criteria.	C3-C5	1, 2	2	5	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; PR-Project; PR-Pro

Course Contents:

Mechanical Design and Failure Analysis:

Design approaches, Factor of safety, Design of simple machine elements; Design for static strength; Material Specifications. Stress analysis, Stress concentration. Fatigue strength reduction factor, Notch Sensitivity. Variable Load.

Designing of Machine Elements:

Shaft: Shaft Materials, and Shaft layout, Shaft Design for Stress, Deflection Consideration, Critical speed for shaft, Limits and fits.

Gears-general: Types of gears, Involute properties, Fundamentals, Contact ratio, Tooth system, Forming of gear teeth, Gear train.

Spur and Helical Gear: The Lwis bending equation, Surface durability, AGMA stress concentration, AGMA strength equation, Geometry factor, Overload factor, Dynamic factor Surface condition factor, Size factor, Load distribution, Reliability factor, Design of a gear mesh.

Bevel and Worm Gear: Strength and stress analysis, AGMA equation factors, Straight bevel gear analysis, Design of straight bevel gear mesh, Worm gear analysis, Designing of worm gear mesh, Buckingham wear load.

Clutch, Brakes, Couplings and Flywheels: Static analysis of clutches and brakes, Internal compounding rim clutches and brakes, External compounding rim clutches and brakes, Bend type

clutch and brakes, Energy consideration, Temperature rise, Friction materials, Flywheels.

Flexible Machine Elements: Flat and round belt drive, V belts, Timing belts, Wire rope, Flexible shafts, Chain drive.

Mapping of Course Outcomes and Program Outcomes:

					Pro	gram	1 Out	com	es (P	O)			
No.	Course Outcomes (CO) of the Course	Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Wodern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	O Individual and Team Work	Life Long Learning	Project Management and Finance
CO1	Explain the mechanical	1	2	3	4	5	6	7	8	9	10	11	12
	and material failures of different machine elements used in product design.	✓	✓										
CO2	Explain the function of different machine elements such as shaft, gear, brake, belt-pulley etc. in industrial applications.	√											
CO3	Explore the application of different machine elements for new product development.		✓										
CO4	Designmachineelementsbasedonproductdevelopmentcriteria.		✓	✓									

Lecture Schedule:

Week Lecture	Topics	ASSESSMENT
--------------	--------	------------

1	I as 1 I 2	Charles of different states and dist	
1	Lec 1-Lec3	Study of different stress conditions in machine	
		elements, Shear force and Bending moment,	
		Torsion, Stress concentration, Mohr;s Circle	
		and Temperature effect.	
			Class Test 1, ASG
2	Lec4-Lec-6	Study of different failures theories related to	
		mechanical and material failures of different	
		machine elements.	
3	Lec7-Lec-9	Study of Shaft, Shaft Materials, and Shaft	
		layout, Shaft Design for Stress.	
4	Lec10-Lec12	Deflection Consideration, Critical speed for	
		shaft, Limits and fits.	
5	Lec13-Lec15	Types of gears, Involute properties,	
		Fundamentals, Contact ratio, Tooth system,	
		Forming of gear teeth, Gear train.	
6	Lec16-Lec18	Study of Spur and Helical gear. The Lewis	Class Test 2, ASG,
		bending equation, Surface durability, AGMA	PR
		stress concentration, AGMA strength	
		equation, Geometry factor, Overload factor.	
7	Lec19-Lec21	Dynamic factor Surface condition factor, Size	
		factor, Load distribution, Reliability factor,	
		Design of a gear mesh.	
8	Lec22-Lec24	Study of Bevel and Worm Gear, Strength and	
	20022 2002 1	stress analysis, AGMA equation factors,	
		Straight bevel gear analysis.	
9	Lec25-Lec27	Design of straight bevel gear mesh, Worm	
	Lee23 Lee27	gear analysis, Designing of worm gear mesh,	
		Buckingham wear load.	
		Buckingham wear load.	Mid Term
10	Lec28-Lec30	Static analysis of clutches and brakes, Internal	MIG I CI III
10	Leczo-Lecsu	compounding rim clutches and brakes,	
		_	
		External compounding rim clutches and	
11	L 221 L 222	brakes, Bend type clutch and brakes, Energy	
11	Lec31-Lec33	, 21	
		consideration, Temperature rise, Friction	
		materials, Flywheels.	
12	Lec34-Lec36	Vave and counting design and analysis Com-	Class Tast 2 % 4
14	Lec34-Lec30	Keys and coupling design and analysis, Gear and power-train design	Class Test 3 & 4,
12	1 227 1 2220	ı C	ASG, R, PR, F
13	Lec37-Lec39	Flat and round belt drive, V belts.	
1.4	LogAO LogAO	Timing holts Wire rose Florible shorts Chair	
14	Lec40-Lec42	Timing belts, Wire rope, Flexible shafts, Chain	
		drive.	

 $(PR-Project\;;\; ASG-Assignment;\; PR-Presentation;\; R\;\text{--}\; Report;\; F-Final\; Exam)$

Linkage of Course Outcomes with Assessment Methods and their Weights:

Asses	sment Strate	egies	CO	D1
Components		Grading	СО	Bloom's Taxonomy
			CO1	C1-C3
	Test 1-3	20%	CO2	C1-C3
	16811-3	2070	CO3	C2-C4
			CO4	C3-C5
Continuous Assessment (40%)	Class Participa tion	5%	-	-
(40%)	Attendan ce	5%	-	-
	Mid	10%	CO 1	C1-C3
	term	10%	CO 3	C2-C4
			CO 1	C1-C3
Final Exam		60%	CO 2	C1-C3
Tillal Exalli		0070	CO 3	C2-C4
			CO 4	C3-C5
Total Marks		100%		

Text and Ref Books:

a) Fundamentals of Mechanical Component Design (7th edition) - Kenneth S. Edwards, Robert B. McKee

Shigley's Mechanical Engineering Design (SI edition) - Richard Budynas, Keith Nisbett The Mechanical Design Process (6th edition) - David Ullman

Course Code: IPE 308 Course Name: Product Design Sessional

Credit Hour: 1.50 Contact Hour: 0.75

Level/Term: L-3, T-2

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: IPE 303 Product Design I

IPE 307 Product Design II

Synopsis/Rationale:

This sessional course, follows the Outcome Based Education (OBE) guidelines. It is designed to reinforce the concept of systematic engineering approach to developing new/re-designed products and to give hands-on training to students of third year.

The sessional course is aligned with the theory course IPE 303 and builds students' skills in identifying customer requirements through effective questionnaire development and to use concepts such as functional decomposition, house of quality, applied mechanics, aesthetics, and economic viability in order to design a product to meet customer's expectations. Therefore, this course addresses on of the most important challenges an industrial engineer might face in his/her career, i.e. to design and develop new products and services for the marketplace and society.

As all engineering disciplines and outcomes of engineering activities have impact on the society and environment, this course also strives to inculcate moral values and ethical decision making in its systematic product design approach.

Objectives:

- 1. To analyze and understand functional characteristics and necessary considerations, based on customers' expectation, in the systematic design of a product
- 2. To model and evaluate probable design options in a systematic manner using physical tests and computer software in order to address customer and societal needs
- 3. To gain practical experience in the fabrication of products and in the use of materials
- 4. To develop and inculcate ethical judgment in students pertaining to product design with regards to societal and environmental impacts

Course Outcomes (CO) Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Interpret and evaluate customer requirements and transform them into engineering specifications for determining required process and materials to realize the specifications using engineering knowledge and computer tools	C2-C5	1	2	1	Pr, R
CO2	Design the product by solid modeling and analyze its structural performance using Finite Element Analysis (FEA)	C4-C6	2	2	1	ASG, R Pr
CO3	Apply cost analysis to select the appropriate material and production process for fabrication in order to meet customer, societal and environmental requirements	C3-C5	1	1	2	ASG

CO4	Implement lean manufacturing and other viable existent techniques throughout the design and production process	С3	2	1,2	1	R
CO5	Function in group setting to fabricate the final product and communicate its benefits and limitations to stakeholders; while being	C6, A3	1	1		PR, Pr, R
	cognizant of the product's environmental impact					

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; PR-Prosentation; R-Report; PR-Project; PR-

Course Contents:

Name of the sessions:

- 1. Introduction, Understanding Customer Requirements
- 2. Quality Function Deployment (QFD), Functional Decomposition
- 3. Design Analysis
- 4. Material Selection, Process Selection
- 5. Finite Element Analysis using Ansys, Ansys Software Practice
- 6. Cost Analysis
- 7. Final Presentation & Project Submission

Mapping of Course Outcomes and Program Outcomes:

No	Course Outcomes (CO) of the]	Prog	gran	n O	utco	me			
No.	Course	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Interpret and evaluate customer requirements and transform them into engineering specifications for determining required process and materials to realize the specifications using engineering knowledge and computer tools (PO: 1, 2, 5, 9)	✓	✓			✓				✓			
CO2	Design the product by solid modeling and analyze its structural performance using Finite Element Analysis (FEA) (PO: 1, 3, 5)	✓		✓		√							
CO3	Apply cost analysis to select the appropriate material and production process for fabrication in order to meet customer, societal and environmental requirements (PO: 2, 7)		✓					✓					

CO4	Implement lean manufacturing and other viable existent techniques throughout the design and production process (PO: 1, 3, 5)	√	√	✓					
CO5	Function in group setting to fabricate the final product and communicate its benefits and					√	√	✓	
	limitations to stakeholders; while being cognizant of the product's environmental impact (PO: 8-10)								

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement
	(hours)
Face-to-Face Learning	
Lecture	-
Practical / Tutorial / Studio	
Student-Centred Learning	2
	8
	10
Self-Directed Learning	
Non-face-to-face learning	40
Revision	10
Assignment/Report Preparations	20
Formal Assessment	
Continuous Assessment	5
Final Examination	-
Total	113

Teaching Methodology:

Lectures, class work, weekly reports, presentation, final report, Problem Based Method, Multimedia Presentation, Visualization using Computer Simulations, Assignments, Feedback at every step.

Lecture Schedule:

Week 1	Introduction, Understanding Customer Requirements				
	Understanding Customer needs, Gathering & prioritizing needs				
We	Quality Function Deployment (QFD), Functional Decomposition				
	Incorporating the Voice of Customer in product design with Quality				
	Function Deployment (QFD), Functional decomposition, Modular				
	design-Basic Clustering method				
Week 5	Design Analysis				
	Design analysis of a product				

Week 7	Material Selection, Process Selection				
	Alternative material and manufacturing process selection & select best with weighted average method				
Week 9	Finite Element Analysis using Ansys, Ansys Software Practice				
	Finite Element method & introduction to Ansys Software, Other mechanical testing				
Week 11	Cost Analysis				
	Cost Analysis				
Week 13	Final Presentation & Project Submission				
	Final Presentation, project submission				

Linkage of Course Outcomes with Assessment Methods and their Weights:

Assessment Strategies			CO	Dlaam's Tayonamy
Components		Grading		Bloom's Taxonomy
Continuous Assessment (70%)	Weekly Reports	20%	CO 1	C2-C5
			CO 2	C4-C6
			CO 4	C3
	Class	ticipa 10%	CO 2	C4-C6
	Participa tion		CO 3	C3-C5
	Presentat ion	40%	CO 1	C2-C5
			CO 2	C4-C6
			CO 5	C6, A3
Final Report		30%	CO 1	C2-C5
			CO 2	C4-C6
			CO 4	C3
			CO 5	C6, A3
Total Marks		100%		

$(CO = Course\ Outcome,\ C = Cognitive\ Domain,\ P = Psychomotor\ Domain,\ A = Affective\ Domain)$

Text and Ref Books:

- 1. Product Design Kevin Otto & Krinstin wood
- 2. Product Design Mike Baxter
- 3. Mechanical Design Process David G. Ullmean
- 4. Mechanical Design Peter R. N. Childs
- 5. Shigley's Mechanical Engineering Design Richard Budynas, Keith Nisbett

Reference Site:

https://classroom.google.com/ (To be announced)

Course Code: IPE 305 **Course Name:** Operations Research

Credit Hour: 4.00 Contact Hour: 4.00

Level/Term: L-3, T-1

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: (1) MATH 103: Differential Equation and Matrix

(2) MATH 201: Vector Analysis, Laplace Transformation and Co-ordinate

geometry

(3) CSE 281: Computer Programming Techniques

(4) IPE 205: Probability and Statistics

Rationale:

The purpose of this course is to provide students with optimization techniques to get the most out of any engineering endeavors and minimize cost, time, and resources and maximize benefits of engineering projects.

Objectives:

- 1. To familiarize students with the origins and nature of Operations Research studies.
- 2. To appraise students about organization problems including specifying the objectives and parts of the system that must be analyzed before the problem is solved.
- 3. To develop students' skills in solving complex real-world problems using acquired knowledge.
- 4. To develop students aptitude in assessing the robustness of optimization models.

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain the fundamental concepts of mathematical optimization	C1-C3	1		2	T, F
CO2	Apply optimization techniques to formulate and solve real-world problems	C2-C4	1		2	ASG, T, Mid Term Exam, F
CO3	Analyze complex engineering projects mathematically and minimize costs while maximizing benefits	C3-C6	2	1	4	PR, T, Mid Term Exam, F
CO4	Assess the effectiveness of diverse optimization methods for addressing problems in real-world scenarios.	C2-C5	1,3		4	ASG, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; PR-Presentation; R-Report; $F-Final\ Exam$)

Course Contents:

Introduction to Operations Research: Origins and Nature of OR Studies, OR Modelling Approach, **Introduction to Linear Programming**: Prototype Example, The Linear Programming Model, Formulating Linear Programming Model

Introduction to Simplex Method: Graphical Method, The Algebra of Simplex Method, Simplex Method in Tabular Form, Post Optimality Analysis, Duality Theory: Introduction to Duality Theory, Primal Dual Relationships, The Role of Duality Theory, Sensitivity Analysis, Other Algorithms for Linear Programming, Linear Programming Practice

Transportation and Assignment Problem: Introduction to Transportation Problems, Case Studies and Properties Of, Transportation Problem, Transportation Simplex, Methods for BF Solution, Assignment Problem, Case Study and Hungarian Method, Practice Problems, **Network Optimization**: Shortest Path Problem, Minimum Spanning Trees, Maximum Flow Problem

Integer Programming: Introduction to Integer Programming, Prototype Example, The Branch and Bound Algorithm, Branch and Bound In MIP

Nonlinear Programming: One, Variable Unconstrained Optimization, Multivariable Unconstrained Optimization, Constraint Program, The Karush Kuhn Tucker Condition, Case Studies and Practice

Game Theory: Case Study and Two Person Zero Sum Game, Solving Simple Games, Games with Mixed Strategies

Markov Chains: Introduction to Markov Chains, Stochastic Processes, Chapman-Kolmogorov Equation

Queueing Theory: Introduction to Queuing Theory, the Birth and Death Process, Case Studies and, Practice Problems.

Mapping of Course Outcomes and Program Outcomes:

Course Learning Outcomes	Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Project Management and Finance	
	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	6712

CO1	Explain the								
	• fundamental								
	concepts of	٧	V						
	mathematical								
	optimization								
CO2	Apply optimization								
	techniques to								
	formulate and solve		٧						
	real-world problems								
CO3	Analyze complex								
	engineering projects								
	mathematically and		٧	٧					
	minimize costs while								
	maximizing benefits								
CO4	Assess the								
	effectiveness of								
	diverse optimization								
	methods for		٧					٧	
	addressing problems								
	in real-world								
	scenarios.								

Teaching and learning activities	Engagement (hours)	
Face-to-face learning		
Lecture	56	
Practical/ Tutorial/ Studio	-	
Student-centered learning	-	

Self-directed learning	
Non face-to-face learning	18
Revision	23
Assessment preparations	20
Formal Assessment	
Continuous Assessment	4
Final Examination	3
Total	124

Teaching methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

Lecture Schedule:

Week	Lecture	Topics	TEST
1	Lec 1	Introduction to Operations Research	
	Lec 2	Origins and Nature of OR Studies	
	Lec 3	OR Modelling Approach	
	Lec 4	OR Modelling Approach (Contd.)	
2	Lec 5	Introduction to Linear Programming	
	Lec 6	Prototype Example	
	Lec 7	The Linear Programming Model	Class Tast 1 E
	Lec 8	Formulating Linear Programming Model	Class Test 1, F
3	Lec 9	Introduction to Simplex Method	
	Lec 10	Graphical Method	
	Lec 11	The Algebra of Simplex Method	
	Lec 12	Simplex Method in Tabular Form	
4	Lec 13	Simplex Method Continued	
	Lec 14	Post Optimality Analysis	
	Lec 15	Introduction to Duality Theory	Class Test 2, Mid Term/F
	Lec 16	Primal Dual Relationships	
5	Lec 17	The Role of Duality Theory	
	Lec 18	Sensitivity Analysis	

	Lec 19	Other Algorithms for Linear Programming	
	Lec 20	Linear Programming Practice	
6	Lec 21	Introduction to Transportation Problems	
	Lec 22	Case Studies and Properties Of Transportation	
		Problem	
	Lec 23	Transportation Simplex	
	Lec 24	Methods for BF Solution	
7	Lec 25	Transportation Simplex Continued	
	Lec 26	Assignment Problem	
	Lec 27	Case Study and Hungarian Method	
	Lec 28	Practice Problems	
8	Lec 29	Network Optimization	
	Lec 30	Shortest Path Problem	
	Lec 31	Minimum Spanning Trees	
	Lec 32	Maximum Flow Problem	Duning E
9	Lec 33	Introduction to Integer Programming	- Project, F
	Lec 34	Prototype Example	-
	Lec 35	The Branch and Bound Algorithm	
	Lec 36	Branch and Bound In MIP	
10	Lec 37	Nonlinear Programming	
	Lec 38	One Variable Unconstrained Optimization	
	Lec 39	Multivariable Unconstrained Optimization	
	Lec 40	Constraint Program	
11	Lec 41	The Karush Kuhn Tucker Condition	Class Tast 2 E
	Lec 42	Case Studies and Practice	Class Test 3, F
	Lec 43	Game Theory	
	Lec 44	Case Study and Two Person Zero Sum Game	
12	Lec 45	Solving Simple Games	
	Lec 46	Games With Mixed Strategies	
	Lec 47	Introduction to Markov Chains	
	Lec 48	Stochastic Processes	
13	Lec49	Chapman-Kolomorogov Equation	Class test 4, F
	Lec50	Introduction to Queuing Theory	
	Lec51	The Birth and Death Process	_
4.4	Lec 52	Case Studies and Practice Problems	
14	Lec 53	Review and Practice	
	Lec 54	-	
	Lec 55 Lec 56	-	
	Lec 36		

Linkage of Course Outcomes with Assessment Methods and their Weights:

	Assessment Strategies	СО	Bloom's Taxonomy			
	Components	Grading		Bloom 5 Taxonomy		
	Class test 1-4	20%	CO 1	C1-C3		
	Class test 1-4	2070	CO 2	C2-C4		
Continuous	Class Participation/Assignment	5%	CO3	C4		
Assessment	Attendance	5%				
(40%)						
	Mid term	10%	CO 2	C2-C4		
			CO 3	C3-C6		
			CO 1	C1-C3		
	Final Exam	60%	CO 2	C2-C4		
		22,1	CO 3	C3-C6		
			CO4	C2-C5		
	Total Marks	100%				

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domai

Text and Ref Books:

1. Introduction to Operations Research-9th edition- Hillier Lieberman, 2010

2. Operations Research-Hamdy A.Taha-10th edition, 2017

Course Code: IPE 306 Course Name: Operations Research Sessional

Credit Hour: 0.75 Contact Hour: 1.50

Level/Term: L-3, T-1

Curriculum Structure:Outcome Based Education (OBE)

Pre-requisites: Concurrent with IPE 305 Operations Research

Synopsis/Rationale:

This sessional course, concurrent with IPE 305 Operations Research, follows the Outcome Based Education (OBE) guidelines. The course is intended to give students the skills necessary to implement optimization models and solve those models using various solution techniques. Students will use computer software and programming language to implement the modeling and solving techniques taught in IPE 305 theory course.

Objectives:

- 1. To achieve the necessary skills to use computer modeling languages.
- 2. To solve those models using various optimization solvers.
- 3. To gain practical experience in modelling of a physical process and data collection, analysis, and wrangling.
- 1. To develop the skills in students to interpret the results and implement those results in a practical scenario.

Course Outcomes (CO) Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessmen t
						Methods
C	Analyze practical business and industry problems to develop mathematical model	C2-C5	1	2	1	PR, Pr, Q
1						
C O	Implement the models using a computer modelling language	C4-C6	2	2	1	ASG, PR,Q
2						
C O 3	Apply a suitable solver software to solve the aforementioned problems	C3-C5	1	1	2	ASG, Q
C O 4	Analyze the results of the model and interpret their implication in a practical scenario	C3	2	1,2	1	P. PR

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; PR-Presentation; R-Report; PR-Presentation; PR-Presentat

Course Contents:

Introduction to modelling: Introduction to AMPL and its interface, CPLEX and its functions

Linear Programming: simplex method, duality theory, sensitivity analysis

Integer Programming: Binary programming, mixed integer programming, pure integer programming

Transportation Problems: Transportation simplex, assignment problem, Hungarian method

Network Optimization: Shortest Path Problem , Minimum Spanning Trees , Maximum Flow Problem

Nonlinear Programming: One, Variable Unconstrained Optimization, Multivariable Unconstrained Optimization, Constraint Programming

Game Theory: Two Person Zero Sum Game, Solving Simple Games, Games with Mixed Strategies

Markov Chains: Introduction to Markov Chains, Stochastic Processes, Chapman-Kolomorogov Equation

Queueing Theory: Introduction to Queuing Theory, The Birth and Death Process

Mapping of Course Outcomes and Program Outcomes:

No.	Course Outcomes (CO) of the			Program Outcome										
110.	Course	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	Analyzepracticalbusinessandindustryproblemstodevelopmathematical model	>			✓	>	✓					>	✓	
CO2	Implement the models using a computer modelling language	✓	✓	✓	✓	✓	✓	✓		✓	✓	✓	✓	
CO3	Apply a suitable solver software to solve the aforementioned problems	√	✓	✓	✓	✓	~	✓		✓	✓	✓	✓	
CO4	Analyze the results of the model and interpret their implication in a practical scenario	✓		✓		√				✓	√	✓	✓	

⁽H – High, M- Medium, L-low)

Touching routining und Tablesbirton Strategy	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	-
Practical / Tutorial / Studio	14
Student-Centred Learning	5
Self-Directed Learning	
Non-face-to-face learning	20
Revision	5
Assignment/Report Preparations	20
Formal Assessment	
Continuous Assessment	5
Final Examination	-
Total	71

Teaching Methodology:

Lectures, class work, project, presentation, final report, Problem Based Method, Multi-media Presentation, Assignments, Feedback at every step.

Lecture Schedule:

Week 1	Introduction to modelling
Class 1	Introduction to AMPL and its interface, CPLEX and its functions
Week 2	Linear Programming
Class 2	simplex method, duality theory, sensitivity analysis
Week 3	Integer Programming
Class 3	Binary programming, mixed integer programming, pure integer
	programming

Week 4	Transportation Problems								
Class 4	Transportation simplex, assignment problem, Hungarian method								
Week 5	Network Optimization								
Class 5	Shortest Path Problem, Minimum Spanning Trees, Maximum Flow Problem								
Week 6	Nonlinear Programming								
Class 6	One, Variable Unconstrained Optimization, Multivariable Unconstrained Optimization, Constraint Programming								
Week 7	Project Proposal								
Class 7	Project Proposal								
Week 8	Quiz								
Class 8	Quiz								
Week 9	Game Theory								
Class 9	Two Person Zero Sum Game, Solving Simple Games, Games with Mixed Strategies								
Week 10	Markov Chains								
Class 10	Introduction to Markov Chains, Stochastic Processes, Chapman-Kolomorogov Equation								
Week 11	Queueing Theory								
Class 11	Introduction to Queuing Theory, The Birth and Death Process								
Week 12	Review								
Class 12	Review Class								
Week 13	Quiz								
Class 13	Final Quiz								
Week 14	Project submission and Presentation								
Class 14	Final Presentation								

Linkage of Course Outcomes with Assessment Methods and their Weights:

Asses	sment Strate	egies	СО	Plaam's Tayonomy
Compor	Components		CO	Bloom's Taxonomy
	Weekly		CO 1	C1-C3, P1-P2
	Assignm	15%	CO 2	C4-C5, P3-P4
	ents		CO 4	C2, P2
Continuous	Class		CO 2	C4, P5
Assessment (70%)	Participa tion	5%	CO 3	C1-C3, P1-P2
(7070)	Project		CO 4	C4-C5, P3-P4
	and	40%	CO 5	C5-C6, P5
	Presentat ion	4070	CO 6	C1-C3, P1-P2
			CO 1	C2-C5
Qui	Z	40%	CO 2	C4-C6
			CO 3	C3
Total M	Total Marks			

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

2. Introduction to Operations Research 8th edition-Hillier Lieberman

3. Operations Research-Hamdy A. Taha

Reference Site:

https://classroom.google.com/ (To be announced)

Course Code: IPE 309 Course Name: Material Handling and Maintenance Management

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-3, T-2

Curriculum Structure: Outcome-Based Education (OBE)

Pre-requisites: None **Synopsis/Rationale:**

This Outcome-Based Education (OBE) based course is designed to introduce students to the systematic materials handling approach. It emphasizes a feasible process to conduct an in-depth study on the movement, protection, storage and control of materials and products throughout manufacturing, warehousing, distribution, consumption, and disposal, also different types of maintenance and their feasibility.

Objectives:

- 1. To introduce students to the issues and importance of handling of materials.
- 2. To expose students to handling processes based on materials.
- 3. To develop students' ability to perform a detailed study on designing concepts of common handling and transfer equipment.
- 4. To introduce students to different types of the maintenance process.
- 5. To make students familiar with the feasibility study of different processes of particular maintenance work.

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain the issues and importance of different materials handling systems.	C1-C3			1-3	T, F
CO2	Analyze performance of different types of conveyors and their power consumption.	C2-C4	3		1-3	T, Mid Term
соз	Evaluate various warehouse facilities appropriate for relevant handling and transfer devices.	C1-C5	3		2,3	Mid Term, F
CO4	Apply the concepts of maintenance and importance of maintenance management.	C1-C3	2		2,4	T, F
CO5	Compare various maintenance strategies for better production planning.	C1-C4	3		2,4	F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; PR– Presentation; R - Report; MT – Midterm Exam, F – Final Exam)

Course Contents:

Issues and importance of handling materials: analysis of material handling problems, classification of materials, unit load, bulk loads, a study of material handling systems and their efficiency, selection, and classification of material conveying equipment.

Product handling: design system configuration conforming to various kinds of product features and layout characteristics.

Designing concepts of common handling and transfer equipment, different types of conveyors such as belt, screw, chain, flight, bucket elevators, pneumatic hydraulic cranes and forklifts, design of warehouse facilities appropriate for relevant handling and transfer device, automatic packaging devices: testing procedure of packages: vibration test, drop test, performance limits and testing machines,

algorithms to design and analyze discrete parts material storage and flow system such as automated storage/retrieval system (ASRS), order picking, automated guided vehicle system (AGVS).

Maintenance management: the concept of maintenance and value of maintenance management, maintenance organization and department structure (resource and administration), types of maintenance, fixed time replacement, condition-based maintenance, preventive and corrective maintenance, replacement strategies, documentation and computer control in maintenance management, Implementation of maintenance planning, plant asset management, human factors in a maintenance environment.

Mapping of Course Outcomes and Program Outcomes:

Course Learning Outcomes		Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Project Management and Finance	Life Long Learning
		P01	P02	P03	P04	PO5	P06	P07	P08	P09	PO10	PO11	PO12
CO1	Explain different material handling systems and their efficiency.	٧	٧										
CO2	Outline different types of conveyors and their power consumption.	٧	٧										
CO3	Evaluate various warehouse facilities appropriate for relevant handling and transfer devices.	٧	٧	٧								٧	٧
CO4	Relate the concept of maintenance and value of maintenance management.	٧	٧										
CO5	Implement different maintenance planning.	٧	٧	٧								٧	

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	40
Revision	20
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	127

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Assignments, Class Tests, Exams, Feedback at every step.

Lecture Schedule:

Week	Lecture	Topics	ASSESSMENT
1	1	Issues and importance of handling of materials: analysis	
		of material handling problems.	
	2	Issues and importance of handling of materials: analysis	
		of material handling problems (continued).	
2	1	Issues and importance of handling of materials: analysis	
		of material handling problems (continued).	
	2	Classification of materials, unit load, bulk loads, a study	
		of material handling systems, and their efficiency.	CT 1 to be held on
3	1	Classification of materials, unit load, bulk loads, a study	these topics
		of material handling systems, and their efficiency	
		(continued).	
	2	Classification of materials, unit load, bulk loads, a study	
		of material handling systems, and their efficiency	
		(continued).	
4	1	Selection and classification of material conveying	
		equipment.	
	2	Selection and classification of material conveying	
		equipment (continued).	
5	1	Selection and classification of material conveying	
		equipment (continued).	

	2	Product handling: design system configuration	
		conforming to various kinds of product features and	
	1	layout characteristics.	
6	1	Product handling: design system configuration	
		conforming to various kinds of product features and layout characteristics (continued).	these topics
	2	Product handling: design system configuration	
		conforming to various kinds of product features and	
		layout characteristics (continued).	
7	1	Designing concepts of common handling and transfer	
		equipment, different types of conveyors such as belt,	
		screw, chain, flight, bucket elevators, pneumatic	
		hydraulic cranes, and forklifts.	
	2	Designing concepts of common handling and transfer	
		equipment, different types of conveyors such as belt,	
		screw, chain, flight, bucket elevators, pneumatic	
		hydraulic cranes, and forklifts (continued).	
8	1	Designing concepts of common handling and transfer	
		equipment, different types of conveyors such as belt,	
		screw, chain, flight, bucket elevators, pneumatic	
		hydraulic cranes, and forklifts. (continued).	
	2	Designing concepts of common handling and transfer equipment, different types of conveyors such as belt,	
		screw, chain, flight, bucket elevators, pneumatic	
		hydraulic cranes, and forklifts (continued).	
9	1	Design of warehouse facilities appropriate for relevant	
	_	handling and transfer device, automatic packaging	
		devices: testing procedure of packages.	
	2	Design of warehouse facilities appropriate for relevant	
		handling and transfer device, automatic packaging	
		devices: testing procedure of packages (continued).	
10	1	Algorithms to design and analyze discrete parts material	
		storage and flow system such as automated	
		storage/retrieval system (ASRS), order picking,	
		automated guided vehicle system (AGVS).	
	2	Maintenance management: the concept of maintenance	
		and value of maintenance management, maintenance	
11	1	organization, and department structure.	
11	1	Maintenance management: the concept of maintenance	
		and value of maintenance management, maintenance organization, and department structure (continued).	
	2	Types of maintenance, fixed time replacement,	
	_	condition-based maintenance, preventive and corrective	
	I	portation based maintenance, preventive and corrective	

		maintenance.	
12	1	Types of maintenance, fixed time replacement, condition-based maintenance, preventive and corrective maintenance (continued).	
	2	Replacement strategies, documentation, and computer control in maintenance management.	these topics
13	1	Replacement strategies, documentation, and computer control in maintenance management (continued).	
	2	Implementation of maintenance planning, plant asset management, human factors in motivation skills in a maintenance environment.	
14	1	Implementation of maintenance planning, plant asset management, human factors in motivation skills in a maintenance environment (continued).	
	2	Course Review.	

(PR – Project; ASG – Assignment)

Linkage of CO with Assessment Methods& their Weights:

Asse	ssment Strategio	es	СО	Plaam's Tayonamy
Components	Components		CO	Bloom's Taxonomy
			CO1	C1-C3
	Test 1-3	20%	CO2	C2-C4
			CO4	C1-C3
Continuous	Class	5%	CO 3	C1-C5
Assessment (40%)	Participation	3%	CO5	C1-C4
(40%)	Attendance	5%	1	-
	Midden	10%	CO 2	C2-C4
	Mid term		CO 3	C1-C5
			CO 1	C1-C3
Final Exam		60%	CO 3	C1-C5
Filiai Exaili		00%	CO 4	C1-C3
			CO 5	C1-C4
Total Marks	Total Marks			

CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

- 1. Manufacturing Facilities Design & Material Handling: Fifth Edition Fred E. Meyers
- 2. Conveyors and Related Equipment A. SPIVAKOVSKY & V. DYACHKOV, First Edition
- 3. Maintenance, Replacement, and Reliability: Theory and Applications Andrew K.S. Jardine, Third Edition

Reference Site:

https://classroom.google.com/ (To be announced)

Course Code: IPE 310 Course Name: Material Handling and Maintenance Management

Sessional

Credit Hour: 0.75 Contact Hour: 3.00 (per 2 weeks)

Level/Term: L-3, T-2

Curriculum Structure: Outcome-Based Education (OBE)

Pre-requisites: None

Synopsis/Rationale:

This Outcome-Based Education (OBE) based course is designed to introduce students to the systematic materials handling approach. It emphasizes feasible handling processes to conduct in a study on the control and storage of materials and products throughout manufacturing, warehousing, distribution, consumption, and disposal in an industry.

Objectives:

- 1. To characterize the properties of materials and explain their impact on the design of storage and conveying systems.
- 2. To introduce the student with design and select conveyor for designated material handling systems.
- 3. To expose students to handling processes based on materials.
- 4. To explain the feasibility study of different processes of particular maintenance work.
- 5. To familiarize with different types of conveyor.

Course Outcomes (CO) & Generic Skills:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Familiar with different types of conveyors and their power consumption.	C1-C3	1		3	DW, DR
CO2	Explain different material handling systems and their efficiency.	C4	2	2		DW, DR

CO3	Design system configuration conforming to various kinds of product features and layout characteristics.	C1, C4	3	2	2	DW, DR			
CO4	Design of a conveyor for a specific material	C4	2	5	2, 6	PR			
CO5	Familiar with the concept of maintenance and their feasibility.	C1, C4	3	5	3	DW, DR			
(DW	(DW- Daily Work, DR – Daily Report, PR – Project, ASG – Assignment, Pr – Presentation, R –								
	Repor	rt)							

Course Contents:

Issues and importance of handling materials: analysis of material handling problems, classification of materials, unit load, bulk loads, a study of material handling systems and their efficiency, selection, and classification of material conveying equipment.

Product handling: design system configuration conforming to various kinds of product features and layout characteristics.

Designing concepts of common handling and transfer equipment, different types of conveyors such as belt, screw, chain, flight, bucket elevators, pneumatic hydraulic cranes and forklifts, design of warehouse facilities appropriate for relevant handling and transfer device, automatic packaging devices: testing procedure of packages: vibration test, drop test, performance limits and testing machines, algorithms to design and analyze discrete parts material storage and flow system such as automated storage/retrieval system (ASRS), order picking, automated guided vehicle system (AGVS).

Maintenance management: the concept of maintenance and value of maintenance management, maintenance organization and department structure (resource and administration), types of maintenance, fixed time replacement, condition-based maintenance, preventive and corrective maintenance, replacement strategies, documentation and computer control in maintenance management, Implementation of maintenance planning, plant asset management, human factors in a maintenance environment.

Mapping of Course Outcomes and Program Outcomes:

Course Learning Outcomes		Engineering Knowledge	Problem Analysis	Design / Development of	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Life-Long Learning	Project Management and
		P01	PO2	P03	P04	P05	P06	PO7	PO8	P09	PO10	P011	P012
CO1	Familiar with different types of conveyors and their power consumption.	√			✓								
CO2	Explain different material handling systems and their efficiency.		✓	✓		✓					✓		
CO3	Design system configuration conforming to various kinds of product features and layout characteristics.		√	✓	✓								
CO4	Design of a conveyor for a specific material			√								√	✓
CO5	Familiar with the concept of maintenance and their feasibility.	✓	✓							√			

Face-to-Face Learning	
Lecture	21
Self-Directed Learning	
Non-face-to-face learning	7
Revision	14
Assessment Preparations	7
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	54
Teaching and Learning Activities	Engagement (hours)

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Assignments, Class Tests, Exams, Feedback at every step.

Lecture Schedule:

Week	Lecture	Topics
1	1	
		Study and Determination of the Capacity of a Belt Conveyer.
3	3	Study and Determination of the parameters of a bucket conveyor.
5	5	Study and Determination of the Capacity of a screw Conveyer.

7	7	Study and Determination of the parameters of a roller conveyor.
9	9	Maintenance management and control
11	11	Final Assessment & Viva
13	13	Final Quiz

(PR – Project; ASG – Assignment; Pr – Presentation; R- Report)

Linkage of Course Outcomes with Assessment Methods and their Weights:

Comp	ponents	Grading	СО	Bloom's Taxonomy
	*** 11		CO 1	C2 - C4
	Weekly Reports	20%	CO 2	C4 – C6
Continuous			CO 4	C3
Assessment (70%)	Class	10%	CO 2	C4 – C6
(1070)	Participation Presentation		CO 3	C3 – C5
		40%	CO 1	C2 – C5
	2 2000111111111111111111111111111111111	1070	CO 5	C6, A3
			CO 1	C2- C5
			CO 2	C3, C4
Final Report		30%	CO 3	C4 – C6
			CO 4	C3
			CO 5	C6, A3
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

- 1. Manufacturing Facilities Design & Material Handling Fred E. Meyers.
- 2. Conveyors and Related Equipment A. SPIVAKOVSKY & V. DYACHKOV.
- 3. Maintenance, Replacement, and Reliability A K S Jardine.

Reference Site:

https://classroom.google.com/ (**To be announced**)

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-3, T-2

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: None

Rationale:

To develop an understanding of and an appreciation for the production and operations management function in any organization.

Objective:

- 1. To appraise students of the strategic role of operations management in creating and enhancing a firm's competitive advantages
- 2. To introduce the key concepts and issues of OM in both manufacturing and service organizations
- 3. To develop students' skills of comprehending the interdependence of the operations function with the other key functional areas of a firm
- 4. To enhance students' aptitude in apply analytical skills and problem-solving tools to the analysis of the operations problems

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	C A	KP	Assessment Methods
CO1	Identify and describe the processes, tools and principles of operations management to better understand the logistics and supply chain operations.	C1, C2	1		3	T, F
CO2	Apply and Evaluate the quality processes in manufacturing and service sector to improve the operational performance.	C3, C5	1		3,4	ASG, T, F
CO3	Assess future challenges and directions that relate to operations management to effectively and efficiently respond to market changes.	C5	1		4	ASG, Mid Term Exam, F
CO4	Identify and Compare the processes needed to develop a new product from identifying the customer needs to delivering the final product.	C2, C4	2	2	4	T, ASG, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, CT – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; MT – Midterm Exam, F – Final Exam)

Course Content:

Integrated purchase-production-marketing system, production systems, product/service life cycle, forecasting models, bill of materials, material and inventory management: inventory models, ABC analysis, coding and standardization, aggregate planning, MPS, MRP, capacity planning, operating scheduling.

Work study: MRP II, optimized production technology, group technology, TQC and JIT.

Mapping of Course Outcomes (CO) and Program Outcomes:

Course Learning Outcomes	Engineering Knowledge	Problem Analysis	Development of	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Project Management and Finance	Life Long Learning
	P01	P02	P03	P04	P05	90d	P07	P08	60d	PO10	P011	P012

	Identify and describe the processes, tools and principles of operations management to better understand the logistics and supply chain operations.	٧						
CO2	Apply and Evaluate the quality processes in manufacturing and service sector to improve the operational performance.		V					
CO3	Assess future challenges and directions that relate to operations management to effectively and efficiently respond to market changes.	٧	٧					
CO4	Identify and Compare the processes needed to develop a new product from identifying the customer needs to delivering the final product.		٧					

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	40
Revision	20
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	127

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multi- media Presentation, Class Presentation, Assignments, Class Tests, Exams, Feedback at every step.

Lecture schedule:

Week 1	Introduction to Operations Management	
Class 1	Concept and definition of Operations Management.	
Class 2	The Scope of Operations Management	
Class 3	Operations Management and Decision Making	
Week 2	Forecasting	

Week 5	Aggregate Planning and Master Scheduling	
Class 12	Work Measurement	
Class 11	Motion Study	CT 2
Class 10	Job Design	
Week 4	Work Design and Measurement	
Class 9	Choosing a Forecasting Technique	
Class 8	Associative Forecasting Techniques	
Class 7	Forecasts Based on Time-Series Data	
Week 3	Forecasting	
Class 6	Approaches to Forecasting	
Class 5	Steps in the Forecasting Process	CT 1
Class 4	Features Common to All Forecasts	

Class	Introduction and Basic Strategies for Meeting Uneven	
13	Demand,	
Class 14	Techniques for Aggregate Planning,	
Class 15	Master Scheduling	
Week 6	MRP	
Class 16	An Overview of MRP	
Class 17	MRP Inputs, MRP Processing, MRP Outputs	
Class 18	MRP II, Capacity Requirements Planning	
Week 7	ERP	
Class 19	An Overview of MRP	
Class 20	ERP in Services.	
Class 21	An Overview of SAP	
Week 8	Inventory Management	
Class 22	An Overview of Inventory Management	CT 3
Class 23	Inventory Ordering Policies	
Class 24	How Much to Order: Economic Order Quantity Models	
Week 9	Inventory Management	
Class 25	How Much to Order: Fixed-Order-Interval Model,	
Class 26	The Single-Period Model	
Class 27	Operations Strategy	
Week 10	JIT and Lean Operations	
Class	Lean Tools	
28		
Class 29	Transitioning to a Lean System	CT 4
Class	An Overview of JIT	
30 Week	Sahadulina	
Week	Scheduling	

11		
Class 31	Scheduling in Low-Volume Systems,	
Class 32	Scheduling Services	
Class 33	Operations Strategy	
Week 12	Location Planning and Analysis	
Class 34	Global Locations	
Class 35	Identifying a Country, Region, Community, and Site	
Class 36	Evaluating Location Alternatives	
Week 13	Quality Control	
Class 37	Statistical Process Control	
Class 38	Process Capability	
Class 39	Inspection	
Week 14	Management of Quality	
Class 40	The Foundations of Modern Quality	
	Management: The Gurus	
Class 41	1 st Review Class	

Weights:

Asses	sment Strategies	S	СО	Bloom's Taxonomy
Components		Grading		
			CO 1	C1-C5
Continuous	Test 1-3	20%	CO 2	C2,C4,C5
Assessment (40%)			CO 4	C2
	Class	5 0/	CO 2	C3, C4
	Participation	5%		

	Mid term	15%	CO 3	C2
			CO 1	C1-C5
			CO 2	C2, C4,C5
Final Exam		60%	CO 3	C2
			CO 4	C2
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Reference Books:

Stevenson, W. J., Hojati, M., & Cao, J. (2007). *Operations management* (Vol. 8). Boston: McGraw-Hill/Irwin.

Render, B., & Heizer, J. (1997). *Principles of operations management* (pp. 518-520). Prentice Hall.

Reference Site:

https://classroom.google.com/ (To be announced)

Course Code: IPE 313 Course Name: Quality Management

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-3, T-2

Curriculum Structure: Outcome Based Education (OBE)
Pre-requisites: IPE 205 (Probability and Statistics)

Rationale:

The main course's objective is to teach students the fundamentals of quality management system and facilitate professional exposure.

Objectives:

- 1. To introduce students to the principles and methodologies used in quantifying quality within various industries, including understanding how quality metrics are defined, measured, and evaluated to make informed decisions.
- 2. To guide students through an in-depth exploration of the phases of quality management, including planning, assurance, control, and improvement
- 3. To equip students with the analytical skills necessary to identify and evaluate critical parameters of quality control

4. To foster students' ability to apply their knowledge of quality management principles and techniques to solve complex real-world problems

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Examine various tools and techniques of quality control through comprehensive analysis	C1-C4	1		2	T, Mid Term Exam, F
CO2	Distinguish the applications of quality tools and techniques in both the manufacturing and service industries	C1-C4	1		2	T, Mid Term Exam, F
CO3	Explain the concepts required for preparation for the Six Sigma Yellow Belt (SSYB) professional certification exam	C3, C4	2		4	ASG, T, F
CO4	Apply quality engineering knowledge in real world problem and solve with different statistical software	C2-C4	2		1	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, $T-Test\ ;$ PR - Project ; Q - Quiz; ASG - Assignment; PR - Presentation; R - Report; F - Final Exam)

Course Content:

Emergence of modern concept of quality and its management, Deming's principle on quality and productivity, quality costs and their interpretation, DMAIC

Methodologies: Six Sigma, Lean Manufacturing, 8D, FMEA, Control Plan, 7 tools for Quality, 7 wastes. Control and measurement concept of quality: elementary SPC tools-PDCA cycle, Pareto's law, cause and effect (fishbone), control charts-attribute control chartzs and variable control charts, design of experiments-identification of key variables for major variations, Acceptance sampling plans

Failure mode and effect analysis, reliability testing. Quality standards and their compliance, ISO 9000 and ISO 14000, foundations of quality revised – total quality management (TQM), application of TQM philosophy, frontiers of quality.

Mapping of Course Outcomes (CO) and Program Outcomes:

	Course Learning Outcomes	Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Project Management and Finance	Life Long Learning
		P01	P02	P03	P04	PO5	90d	P07	P08	PO9	PO 10	PO11	PO 12
CO1	Examine various tools and techniques of quality control through comprehensive analysis.	٧		٧									
CO2	Distinguish the applications of quality tools and techniques in both the manufacturing and service industries		٧	٧	٧								
CO3	Explain the concepts required for preparation for the Six Sigma Yellow Belt (SSYB) professional certification exam-						v					٧	٧
CO4	Apply quality engineering knowledge in real world problem and solve with different statistical software	٧		٧	٧								

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	10
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	40
Revision	20
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	137

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Assignments, Class Tests, Exams, Feedback at every step.

Lecture Schedule:

Week	Course Content	ASSESSMENT
Week 1	Management & Quality tools	
Class 1	Introduction	
Class 2	Different Aspects of Quality	
Class 3	Basic Tools of TQM	
Week 2		
Class 4	Lean Manufacturing	
Class 5	Control Plan	
Class 6	Control Plan	
Week 3		Class Test 1, F
Class 7	7 wastes	Class Test 1, F
Class 8	PDCA	
Class 9	Root cause	
Week 4		
Class 10	QFD	ASG, Class
Class 11	ISO 9001, ISO 14001	Test 2, F
Class 12	,	

Week 5	Control Chart	
Class 13	Attribute & Variable Control Chart	
Class 14	Attribute & Variable Control Chart	
Class 15	Attribute & Variable Control Chart	
Week 6		
Class 16	Special Control Chart	
Class 17	Special Control Chart	
Class 18	Special Control Chart	
Week 7	Process Capability & Specifications	
Class 19	C_p, C_{pk}	
	Quality of design, conformance and performance,	
Class 20	Deming"s principle on quality and productivity, quality	
	costs and their interpretation	
Class 21	Deming"s principle on quality and productivity, quality	
Class 21	costs and their interpretation	
Week 8	Sampling Plan	ASG, Mid
Class 22	Acceptance sampling plans: OC curves,	Term, F
Class 23	Acceptance sampling plans: OC curves,	
Class 24	Single and double sampling plants	
Week 9		
Class 25	Single and double sampling plants	
Class 26	Sequential and rectifying inspection plans AOQ.	
Class 27	Sequential and rectifying inspection plans AOQ.	
Week 10	Design of Experiments	
Class 28	Introduction to Design of Experiments	
Class 29	Full Factorial Analysis	
Class 30	Multi Vari Chart	Class Test 3,-
Week 11		ASG, F
Class 31	Variable Search Method	ASG, F
Class 32	Surplus and waste management ANOVA	
Class 33	Surplus and waste management ANOVA	
Week 12	Six Sigma Management	
Class 34	DMAIC	
Class 35	Six Sigma	

Class 36	Six Sigma				
Week 13	Taguchi Loss Function				
Class 37	Introduction				
Class 38	Quality Loss Function				
Class 39	Traditional Goal Post View of Quality				
Week 14	Review				
Class 40	Review				
Class 41	Review				
Class 42	Review				

Linkage of Course Outcomes with Assessment Methods and their Weights:

	Assessment Strateg			D1 T
Components		Grading	СО	Bloom's Taxonomy
			CO 1	C1-C4
	Test 1-3	20%	CO 2	C1-C4
			CO 3	C3, C4
Continuous	Class		CO 2	C1- C4
Assessment		5%	CO 3	C3, C4
(40%)		5%		
			CO 1	C1-C4
	Mid term	10%	CO 2	C1-C4
			CO 3	C3, C4
			CO 1	C1-C4
Final Exam		60%	CO 2	C1-C4
Tiliai Exalli		0070	CO 3	C3, C4
			CO 4	C2-C4
Total Marks	_	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

- Industrial Engineering: FE Review Manual, Brightwood Engineering Education
 Thomas & Paul, Six Sigma Handbook, 3rd Edition, 2010
 Dr. M. Ahsan Akhtar Hasin, Quality Control and Management, 3rd Edition, 2017

Course Code: IPE 314 Course Name: Quality Management Sessional

Credit Hour: 0.75 Contact Hour: 1.50

Level/Term: Level 3/ Term II

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisite: None

Rationale:

This course is concurrent with IPE 313: Quality Management, and its objective is to teach students the methods of analyzing data to make decisions related to quality control processes in industries.

Objectives:

- 1. To describe different patterns observed in data.
- 2. To generate visual representation of data.
- 3. To analyze the critical performance parameters of quality.
- 4. To make concise decisions on quality control.
- 5. To apply quality control tools and techniques.

Course Outcomes (CO) & Generic Skills:

	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain how data analysis helps making quality control decisions	C4-C5		1	1	Pr, R
CO2	Apply quality control tools to assess production/service industries	C3-C6	1	2	1	Q, ASG, R
СОЗ	Outline and explain different methodologies of quality control	C2-C3	1	1	2	Q, ASG
CO4	Analyze and compare different process options to decide on the best one	C1-C2		1	1	Q, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

Course Contents:

Name of the experiments:

- 1. Introduction to Quality Control & Minitab installation
- 2. Describing distributions histogram, boxplot, stem plot, time series plot, normal quartile plot, etc.
- 3. Familiarities with DOE
- 4. Inference from Regression fits, ANOVA, correlations
- 5. Assessing the Quality

Mapping of Course Outcomes and Program Outcomes:

No.	Course Outcomes (CO) of the]	Prog	ran	n Oı	utco	me			
110.	Course	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Explain how data analysis helps making quality control decisions (PO: 1, 2, 4, 5)	>	√		✓	✓							
CO2	Apply quality control tools to assess production/service industries (PO: 1, 2, 5)	✓	√			✓							
CO3	Outline and explain different methodologies of quality control (PO: 3, 5)			✓		✓							
CO4	Analyze and compare different process options to decide on the best one (PO: 1, 4, 5)	~			✓	~							

Teaching-learning and Assessment Strategy:

Teaching and learning activities	Engagement (hours)
Face-to-face learning	
Lecture	-
Practical/Tutorial/Studio	14
Student-centred learning	-
Self-directed learning	
Non face-to-face learning	9
Revision	14
Assessment preparations	18

Formal Assessment	
Continuous Assessment	1.5
Final Examination	1.5
Total	58

Teaching methodology:Lecture and Discussion, Software Applications Based, Co-operative and Collaborative Method, Problem Based Method

Lecture Schedule:

Week	Topics
1	Experiment 1: Introduction to Quality Control & Minitab installation

3	Experiment 2: Describing distributions – histogram, boxplot, stem plot, time series plot, normal quartile plot, etc.
5	Experiment 3: Familiarities with DOE
7	Mid-term Quiz
9	Experiment 4: Inference from Regression – fits, ANOVA, correlations
11	Experiment 5: Assessing the Quality
13	Final Quiz

Linkage of Course Outcomes with Assessment Methods and their Weights:

A	Assessment Strategies		СО	Bloom's Taxonomy
Co	mponents	Grading	CO	Bloom's Taxonomy
Continuous	Assignment	20%	CO 1-2	C 3, C 4, P 1, P 2
Assessment (40%)	Class Participation	5%	CO 2-3	C 1, A 2, P 2
(1070)	Mid Term Quiz	15%	CO 3-4	C 3-6, P 3
Fi	inal Quiz	60%	CO 3-4	C 3-6, P 3
To	tal Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

1. Quality Control and Management – Ahsan Akhtar Hasin

Reference Site:

https://classroom.google.com/ (To be announced)

Course Code: IPE 315 Course Name: Entrepreneurship Development and Micro

Industries

Credit Hour: 2.00 Contact Hour: 2.00

Level/Term: L-3, T-2

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: None

Synopsis/Rationale:

Entrepreneurship Development and Micro Industries is an interdisciplinary theory course designed to demonstrate students how to think and act entrepreneurial. Students will learn how to start-up and operate a micro industry. The course will build on cross-curricular academic skills, by integrating inquiry-based learning and business tools that will enable students to analyze, create, develop, and pilot small businesses.

Objectives:

6. To understand the basic concepts in the area of entrepreneurship.

- 7. To recognize the role and significance of entrepreneurship for economic growth.
- 8. To analyze the societal and environmental impacts of entrepreneurship and micro industries.
- 9. To realize the stages of the entrepreneurial process and the resources needed for the successful development of entrepreneurial ventures.
- 10. To develop the mindset of developing micro industry and create job sector for unemployed youth.

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Create the ability of analyzing various aspects of entrepreneurship especially of taking over the risk, and the specificities as well as the pattern of entrepreneurship development and, finally, to contribute to their entrepreneurial and managerial potentials.		1	1	3	T, Mid Term Exam, F
CO2	Propose optimum business solutions to complicated business problems and evaluate that problem based on societal and environmental prospects.		1	2	7	ASG, Mid Term Exam, F

CO3	Establish their own business as an entrepreneur which can help to reduce the unemployment problem as well as improve their risking handling ability.	C3-C5	3	2	6	ASG, Mid Term Exam, F
CO4	Review and analyses real life business case studies from external sources and create proper plan for their own business from past data analysis.	C4 - C6	7	5	5	T, ASG, R, F
CO5	Demonstrate loyalty in the direction of business ethics.	C3 – C6	4	1	7	ASG, PR, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; Pr-Presentation; R-Report; $F-Final\ Exam$)

Course Contents:

Conceptual definition of entrepreneurs and entrepreneurship, Entrepreneurship in economic theory, Historical development of entrepreneurship, The importance of small business, Type of Entrepreneurship, Entrepreneur and small business, Features and types of businesses and entrepreneurs, Sources of business ideas, The role of entrepreneurship in economic development, Terms of entrepreneurship, Innovation and entrepreneurship, Entrepreneurship and small business, The life cycle of a small company, Small business sector in Bangladesh, Forms of entrepreneurial organization, Analysis on sources of capital, Entrepreneurial process, Entrepreneurial strategies, Starting a new company or buying an existing business decision making, Defining the business concept. Writing a business plan, Basics of Venture Marketing. Fundamentals of entrepreneurial management, Small industries. Business process: product design, operational art, stock management. Technical and technological analysis of entrepreneurial projects. Designing a business investment, Knowledge Economy, Entrepreneur biographies - the actual successes and failures, Business results in SMEs. Fostering the development of entrepreneurship, Entrepreneurship in Bangladesh, Entrepreneurship in transition countries, Strategic guidelines, and objectives for the development of SMEs in Developing Countries like Bangladesh.

Mapping of Course Outcomes and Program Outcomes:

Program Outcomes (PO)

No.	Course Outcomes (CO) of the Course	Engineering Knowledge	Problem Analysis	Design / Development of Solutions	4 Investigation	Wodern Tool Usage	The Engineer and Society	2 Environment and Sustainability	& Ethics	6 Communication	10 Individual and Team	Project Management	Life Long Learning
CO1	Create the ability of	1		3	4	3	U	/	o	9	10	11	12
COI	analyzing various aspects of entrepreneurship especially of taking over the risk, and the specificities as well as		√		\checkmark						V		
	the pattern of entrepreneurship development and, finally, to contribute to their entrepreneurial and managerial potentials.												
CO2	Propose optimum business solutions to complicated business problems and evaluate that problem based on societal and environmental prospects.		√	√	V			√					
CO3	Establish their own business as an entrepreneur which can help to reduce the unemployment problem as well as improve their risking handling ability.		√	√	V		V						
CO4	Review and analyses real life business case studies from external sources and create proper plan for their own business from past data analysis.		V	√									$\sqrt{}$

ſ	CO5	Demonstrate loyalty						
		in the direction of						
		business ethics.						ĺ

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	28
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	20
Revision	10
Assignment Preparations	10
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	118

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Visualization using Computer Simulations, Assignments, Class Tests, Exams, Feedback at every step.

Lecture Schedule:

Week	Lecture	Topics	ASSESSMENT
1	Lec 1	Introduction to entrepreneurs and	
	Lec 2	entrepreneurship,	
		Entrepreneurship in economic theory,	
		Historical development of entrepreneurship	
2	Lec 3	The importance of small business,	
	Lec 4	Type of Entrepreneurship,	
		Entrepreneur and small business	
3	Lec 5	Features and types of businesses and	
	Lec 6	entrepreneurs,	Class Test 1 ASC
		Sources of business ideas,	Class Test 1, ASG, F
		The role of entrepreneurship in economic	Ľ
		development	

4	Lec 7	Terms of entrepreneurship,	
	Lec 8	Innovation and entrepreneurship,	
		Entrepreneurship, and small business,	
		The life cycle of a small company	
5	Lec 9	Small business sector in Bangladesh,	
	Lec 10	Forms of entrepreneurial organization,	
		Analysis on sources of capital,	
6	Lec 11	Entrepreneurial process, Entrepreneurial	
	Lec 12	strategies,	
		Starting a new company or buying an existing	
		business decision making	
7	Lec 13	Defining the business concept.	
	Lec 14	Writing a business plan,	
		Basics of Venture Marketing	
8	Lec 15	Fundamentals of entrepreneurial management,	
	Lec 16	Small industries.	Mid Term, F

9	Lec 17 Lec 18	Business process: product design, operational art, stock management, Technical and technological analysis of entrepreneurial projects	
10	Lec 19 Lec 20	Designing a business investment, Knowledge Economy, Entrepreneur biographies - the actual successes and failures	
11	Lec 21 Lec 22	Business results in SMEs. Fostering the development of entrepreneurship,	
12	Lec 23 Lec 24	Entrepreneurship in Bangladesh, Entrepreneurship in transition countries	Class Test 2, ASG, PR, F
13	Lec 25 Lec 26	Strategic guidelines, and objectives for the development of SMEs in Developing Countries like Bangladesh.	
14	Lec 27 Lec 28	Review Classes	

(PR – Project; ASG – Assignment; PR – Presentation; R - Report; F – Final Exam)

${\bf Linkage\ of\ Course\ Outcomes\ with\ Assessment\ Methods\ and\ their\ Weights:}$

Asses	sment Strate	egies	СО	Plaam's Tayonomy			
Components		Grading		Bloom's Taxonomy			
			CO 1	C3, C6			
	Test 1, 2	20%	CO 3	C3 – C6			
			CO 4	C4 – C6			
Continuous	Class		CO 1	C3, C6			
Assessment (40%)	Participa tion	5%	CO 2	C3, C4			
	Mid term		CO 1	C3, C6			
		15%	CO 2	C3, C4			
			CO 4	C4 – C6			
			CO 1	C3, C6			
			CO 2	C3, C4			
Final Exam		60%	CO 3	C3 – C6			
			CO 4	C4 – C6			
			CO 5	C3 – C6			
Total Marks		100%					

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

- 1. Essentials of Entrepreneurship and Small Business management (5/ed.): Thomas W.
- 2. Zimmerer, and Norman M. Scarborough. PHI Entrepreneurship: Strategies and Resources, 3/E -: Marc Dollinger; Prentice Hall
- 3. Entrepreneurship in Action, 2/E Mary Coulter; Prentice Hall

Reference Site:

- 1. http://ediindia.ac.in/e-policy/ [Enterpeneurial Policy India]
- 2. http://en.wikipedia.org/wiki/List_of_venture_capital_companies_in_India [Venture Capital]
- 3. indiavca.org/venture-capital-in-india.html [Venture Capital]
- 4. www.indianangelnetwork.com/ [Angel Investing]
- 5. www.startbizindia.in/angel_investors_india.php [ANGEL INVESTING]
- 6. economictimes.indiatimes.com/...of...entrepreneurs/.../20912945.cms [Leadership] [Innovation]
- 7. www.bplans.com/ [BUSINESS PLAN]
- 8. www.entrepreneur.com/businessplan [BUSINESS PLAN]

https://classroom.google.com/ (To be announced)

Course Code: IPE 317 Course Name: Ergonomics and Safety

Management

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-3, T-2

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: None

Synopsis/Rationale:

To design and use ergonomic principles for design a better working environment for workers so that they complete their task more effectively and safely.

Objectives:

- 1. To encourage students about the need and role of ergonomics in occupational health.
- 2. To familiarize students with the application of ergonomic principles to design of industrial workplaces and the prevention of occupational injuries
- 3. Explain the psychology of human behavior as it relates to workplace safety.

4. To provide students' knowledge of safety management concepts and develop students' knowledge to accept and oversee the key components of an SMS, including their implementation.

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Evaluate the impact of various personal attributes and physical environment factors on proper safe working practice.	C1, C2, C5	1,3		1,2	T, F
CO2	Apply principles of good ergonomic design of work areas and equipment to a range of occupational settings.	C3-C4	1,4		1,2	ASG, Mid Term Exam, F
CO3	Explain the rationale for having laws and regulations in the workplace, including federal safety standards (OSHA) and consensus standards.	C2	1		1	T, F
CO4	Employ safety principles for improving the overall health and safety of the workplace in any industries.	C3, C6	1,5		5,6	T, F, Mid Term

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, $T-Test\ ;$ PR - Project ; Q - Quiz; ASG - Assignment; PR - Presentation; R - Report; F - Final Exam)

Course Contents:

Man-machine-material interfaces in manufacturing: physical and cognitive aspects, comparative advantages of man and machine, physical work and human muscular effort, biomechanics and bio-engineering.

Anthropometry, work place design and work place layout, human performance under environment temperature, illumination, vibration, noise, pollution radiation static and dynamic conditions.

Evolution of modern safety concepts, industrial hazard, safety and risk management, productivity, worker health and safety, proactive management techniques for safety management, safety standards and regulations for engineering works, case studies.

Mapping of Course Outcomes and Program Outcomes:

No. Course Outcomes Program Outcomes (PO)	
---	--

	(CO) of the Course										V		
	(CO) of the Course	Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Life Long Learning	Project Management and Finance
		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Evaluate the impact of various personal attributes and physical environment factors on proper safe working practice.	V	√	√									
CO2	Apply principles of good ergonomic design of work areas and equipment to a range of occupational settings.			√	√			√			√		
CO3	Explain the rationale for having laws and regulations in the workplace, including federal safety standards (OSHA) and consensus standards.	V		√					V				
CO4	Employ safety principles for improving the overall health and safety of the workplace in any industries.			V		V		V		√	V		

(H – High, M- Medium, L-low)

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-

Self-Directed Learning	
Non-face-to-face learning	40
Revision	20
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	127

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Visualization using Computer Simulations, Assignments, Class Tests, Exams, Feedback at every step.

Lecture Schedule:

Week	Lecture	Topics	ASSESSMENT
1	Lec 1	Course overview, importance of this course for	
	Lec 2	industrial engineers.	
	Lec 3	Understanding the concept of ergonomics	
		Man machine system and its components	
2	Lec 4	Concepts of anthropometry and its uses.	Class Test 1, ASG,
	Lec 5	Anthropometry in workstation design.	F
	Lec 6	Design of work surfaces and seats.	
3	Lec 7	Design of work surfaces and seats.	
	Lec 8	Concepts of stress and strain.	
	Lec 9	Study of metabolisom.	
4	Lec 10	Introduction of physiological functions.	
	Lec 11	Concepts of workload and energy	
	Lec 12	consumption.	
		Biomechanics.	
5	Lec 13	Types of body movements of different body	
	Lec 14	members.	
	Lec 15	Strength and endurance.	
		Speed of movements	
6	Lec 16	Concepts of the terms related to NIOSH lifting	Class Test 2, ASG,
	Lec 17	Equation.	PR, F
	Lec 18	Explanation of NIOSH lifting equation.	
		Lifting index and maximum acceptable weight	
		and forces, application of NIOSH lifting	
		equation.	
7	Lec 19	Distal upper extremities risk factors, Starin	
	Lec 20	index.	
	Lec 21	Rapid Upper Limb Assessment (RULA),	
		Rapid Entire Body Assessment (REBA)	

		Review Class 1	
8	Lec 22	Introduction to office ergonomics.	
	Lec 23	Importance of study of office ergonomics.	
	Lec 24	Concepts of Visual display terminals (VDT)	
		Design consideration for VDT workstation	
		design.	
		Visual displays in static information, authority,	
		display and controls.	
		Effects of vibration, noise, temperature, and	
		illumination on performance.	
9	Lec 25	Introduction to existing safety codes.	Mid Term, F
	Lec 26	Ideas about safety standards.	Wild Term, I
	Lec 27	Concepts about accident prevention and	
		control ways.	
		Fire safety.	
		Electrical safety.	
10	Lec 31	Safety in material handling.	
	Lec 32	Safety in storage.	
	Lec 33	Safety in hand portable power tools.	
11	Lec 28	Introduction to industrial hygiene.	
	Lec 29	General concepts of workers protection.	
	Lec 30	Understanding industrial hygiene.	
		Various hazards in workplace.	
12	Lec 34	Concepts of personal protective equipment.	
	Lec 35	Types of personal protective equipment.	
	Lec 36	Design standards of personal protective	
		equipment.	
		Selection criteria of personal protective	Class Test 3, ASG,
10	1 27	equipment.	R, PR, F
13	Lec 37	Introduction to risk management.	
	Lec 38	Risk management process.	
	Lec 39	The Risk Event Graph	
4.4	T 40	Principles of risk management.	
14	Lec 40	Export risk management	
	Lec 41	Insurance and its application as risk	
	Lec 42	distribution.	
		Review Class 2	

 $(PR-Project\ ;\ ASG-Assignment;\ PR-Presentation;\ R-Report;\ F-Final\ Exam)$

Linkage of Course Outcomes with Assessment Methods and their Weights:

Assessment Strategies		es	CO	Bloom's Taxonomy			
Components		Grading	CO	Bloom's Taxonomy			
			CO 1	C1, C2, C5			
	Test 1, 2	20%	CO 3	C3-C4			
			CO 4	C4			
Continuous	Class	5%	CO 1	C1, C2, C5			
Assessmen	Participation	3%	CO 2	C4			
t (40%)	Attendance	5%					
			CO 1	C1, C2, C5			
	Mid term	10%	CO 2	C4			
			CO 4	C4			
			CO 1	C1, C2, C5			
			CO 2	C4			
Final Exam		60%	CO 3	C3-C4			
Filiai Exaili		00%	CO 4	C4			
			CO 5	C4			
			CO 6	C3, C6			
Total Marks		100%					

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

- 1. Helander, M. (2005). A guide to human factors and ergonomics. Crc Press. Elian Stone, Jean A Samples, "Fashion Merchandising". McGraw Hill Book company, New York, 1985.
- 2. Salvendy, G. (2012). Handbook of human factors and ergonomics. John Wiley & Sons.
 - 3. Reese, C. D. (2008). Occupational health and safety management: a practical approach. CRC press.

Course Code: IPE 318 Course Name: Ergonomics and Safety Management

Sessional

Credit Hour: 0.75 Contact Hour: 1.5

Level/Term: L-3, T-2

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: Concurrent with IPE 317

184

Rationale:

To provide support for both research and teaching activities related to ergonomics, safety and methods engineering.

Objective:

- 1. To increase awareness of the need for and role of ergonomics in occupational health
- 2. To obtain basic knowledge in the application of ergonomic principles to design of industrial workplaces and the prevention of occupational injuries
- 3. To understand the breadth and scope of occupational ergonomics.
- 4. To provide students knowledge of safety management concepts and develop students' knowledge to accept and oversee the key components of an SMS, including their implementation.

Course Outcomes (CO) Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Design and conduct experiments, as well as to analyse and interpret data	C3-C6	1	1,3	1,2	R
CO2	Design a system, component, or process to meet accepted human factors and workplace ergonomics standards within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	C3-C6	1, 2	1,2	5,6	R
CO3	Use the techniques, skills, and modern human factors and workplace ergonomics tools necessary for industrial and systems engineering practice. Apply tools and knowledges for creating the formal letters in career opportunities procedure.	C3-C4	1, 2	1	5,6	ASG,R
CO4	Implement safety principles in any industries.	C4 – C6	1	5	6,7	PR,ASG, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; PR-Project; PR-Pro

Course Content:

Measurement of anthropometric data using anthropometer and analysis of dada, Measurement of the ambience noise in road side hospitals or clinics using sound level meter and its consequences., Assessment of luminance in different work places using lux meter and its consequences,

Measurement of pinch grip strength s data and their application in product/hand tool design and drafting, Study of industrial safety signs, types and their purposes.

Mapping of Course Outcomes (CO) and Program Outcomes:

Course Learning Outcomes		Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team	Life Long Learning	Project Management and Finance
		PO1	P02	P03	P04	P05	P06	PO7	P08	P09	P010	P011	P012
CO1	Design and conduct experiments, as well as to analyse and interpret data	✓	√	1	√	✓							
CO2	Design a system, component, or process to meet accepted human factors and workplace ergonomics standards within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	√	√	✓									
CO3	Use the techniques, skills, and modern human factors and workplace ergonomics tools necessary for industrial and systems engineering practice.		√	√								✓	

Apply tools and knowledges for creating the formal letters in career opportunities procedure.							
Implement safety principles in any industries.		✓		✓			

Lecture schedule:

Week No	Content	Remark			
1	Course overview, Group Selection				
3	Measurement of anthropometric data using anthropometer and analysis of dada.				
5	Measurement of the ambience noise in road side hospitals or clinics using sound level meter and its consequences.	Submit Report 1			
7	Assessment of luminance in different work places using lux meter and its consequences.	Submit Report 2			
9	Measurement of pinch grip strength s data and their application in product/hand tool design and drafting.	Submit Report 3			
11	Study of industrial safety signs, types and their purposes.	Submit Report 4			
13	Final Quiz / Presentation	Submit Report 5 + Final Project Report Submission			

Linkage of Course Outcomes with Assessment Methods and their Weights:

	Assessment Strate	egies	CO	Plaam's Tayonomy
(Components	Grading	CO	Bloom's Taxonomy

		CO 1	C3-C6
Weekly	200/	CO 2	C3-C6
Reports	20%	CO 3	C3-C4
		CO 4	C4 – C6
Class Participa tion	40%	CO 1	C3-C6
Presentat	10%	CO 1	C3-C6
		CO 2	C3-C6
IOII		CO 3	C3-C4
		CO 1	C3-C6
ot Damant	200/	CO 2	C3-C6
et Report	30%	CO 3	C3-C4
		CO 4	C4 – C6
Total Marks			
	Class Participa tion Presentat ion et Report	Reports Class Participa tion Presentat ion 10% et Report 30%	Weekly Reports 20% CO 2 Class Participa tion 40% CO 1 Presentat ion 10% CO 2 Ct Report 30% CO 2 Ct Report 30% CO 3 Ct CO 3 CO 4

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

- 1. Helander, M. (1995). A Guide to the Ergonomics of Manufacturing. London: Taylor & Francis.
- 2. Pheasant, S. (1991). Ergonomics, work and health. Macmillan International Higher Education.

Reference Site:

https://classroom.google.com/ (To be announced)

Course Code: IPE 319 Course Name: Data Analytics

Credit Hour: 2.00 Contact Hour: 2.00

Level/Term: L-3, T-2

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: None

Rationale:

This course is designed to provide a comprehensive understanding of key concepts, methodologies, and tools within the field of data analytics.

Objectives:

1. To familiarize students with diverse machine learning frameworks

- 2. To enhance students' proficiency in computational abilities, analytical aptitude, data stewardship expertise, and project design skills', aiming to bolster one's professional profile as a data scientist.
- 3. To develop students' skills in data visualization and visual analytics and the ability to communicate complex analytical findings effectively.
- 4. To encourage students to critically evaluate the robustness and validity of predictive models, considering factors such as model accuracy, interpretability, and ethical implications

Course Outcomes (CO) & Generic Skills:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Identify the application areas of quantitative modeling in industrial engineering through visualization	C1, C2	2		2	ASG, T, Mid Term Exam
CO2	Develop statistical learning techniques to analyze engineering data.	C3	3		2	ASG, T, Mid Term Exam, F
CO3	Analyze data for practical data science applications by using different software	C4	1,3		3	PR, T, F
CO4	Compare different machine learning methods for modeling relationships in data.	C4-C5	1,3		4	ASG, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; PR – Presentation; R - Report; F – Final Exam)

Course Contents:

Introduction to data science and analytics: data science concepts, application areas of quantitative modeling, Basics of Google Colab and Python Programming

Introduction to statistical learning: Data Manipulation, Data Loading & Storage, Plotting and Visualization

Introduction to Predictive and Inference Analytics;

Types of Machine Learning Systems, Working Principle of Machine Learning;

Regression Analysis: Linear regression, Logistic regression;

Supervised and unsupervised learning: Naive Bayes, K-NN, Support Vector Machines (SVM) and Kernel Methods, Multiple Linear Regression, Lasso and Ridge Regression, Tree-based Models, Ensemble Learning using Bagging and Boosting, Clustering and Principal Component

Analysis

Data Inference Techniques: Uncertainty Quantification, Active Learning, Bayesian Belief Networks (BBN)

Common methods for dimensionality reduction: Principal Component Analysis, Linear Discriminant Analysis (LDA), Multidimensional Scaling;

Introduction to Neural Networks: Overview of artificial neural networks (ANNs), Historical background and evolution, Basic concepts: neurons, activation functions, weights, and biases.

Deep Learning and Deep Neural Networks: Introduction to deep learning, Architecture of deep neural networks, Benefits and challenges of deep learning

Convolutional Neural Networks (CNNs): Basics of image processing and computer vision, Architecture of CNNs, Applications in image classification and object detection

Practice and analysis with data science software: Python, MATLAB, and R Programming.

Course Learning Outcomes		Engineering	Knowledge	Problem Analysis	Design / Development	of Solutions	Investigation	Modern Tool Usage	The Engineer and	Society	Environment and	Sustainability	Ethics	Communication	Individual and Team	Work	Life Long Learning	Project Management	and Finance
		PO1		P02	PO3	3	P04	P05	POK	3	700		PO8	PO9	0100	FOIO	P011	2504	F012
	Identify the																		
	application areas																		
	of quantitative																		
CO1	modeling in		V		ما	$\sqrt{}$													
	industrial	V	•	•		•													
	engineering																		
	through																		
	visualization																		

CO2	Develop statistical learning techniques to analyze engineering data.	V	V	V				\	
CO3	Analyze data for practical data science applications by using different software	V	V	V				\checkmark	
CO4	Compare different machine learning methods for modeling relationships in data.	V	V	V				\checkmark	

(H – High, M- Medium, L- Low)

Teaching-learning and Assessment Strategy:

Teaching and learning activities	Engagement (hours)
Face-to-face learning	
Lecture	42
Practical/ Tutorial/ Studio	30
Student-centered learning	-
Self-directed learning	
Non face-to-face learning	18

Revision	21
Assessment preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	136

Teaching methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Visualization using Computer Software, Assignments, Class Tests, Exams, Feedback at every step.

Lecture Schedule:

Week	Lecture	Topics	TEST
1	Lec 1	Introduction to data science and analytics	
	Lec 2	Data Science Concepts	
	Lec 3	Application areas of quantitative modeling,	
		Basics of Google Colab and Python	
		Programming	
2	Lec 4	Introduction to statistical learning: Data	
		Manipulation, Data Loading & Storage,	
	Lec 5	Introduction to statistical learning: Plotting	
		and Visualization	
	Lec 6	Introduction to Predictive and Inference	ASG, Class Test 1,
		Analytics	F
3	Lec 7	Types of Machine Learning Systems, Working	
		Principle of Machine Learning;	
	Lec 8	Regression Analysis: Linear regression,	
	Lec 9	Regression Analysis: Logistic regression	
4	Lec 10	Introduction to Supervised and unsupervised	ASG, Class Test 2,
		learning	F

	Lec 11	Supervised learning: Naive Bayes	
	Lec 12	Supervised learning: K-NN	
5	Lec 13	Supervised learning: Support Vector Machines (SVM) and Kernel Methods	
	Lec 14	Supervised learning: Support Vector Machines (SVM) and Kernel Methods	
	Lec 15	Supervised learning: Multiple Linear Regression	
6	Lec 16	Supervised learning: Lasso and Ridge Regression	
	Lec 17	Supervised learning: Tree-based Models	
	Lec 18	Supervised learning: Ensemble Learning using	
		Bagging and Boosting	
7	Lec 19	Unsupervised learning: Clustering	
	Lec 20	Unsupervised learning: Principal Component Analysis	
	Lec 21	Unsupervised learning: Principal Component Analysis	ACC Mid Town E
8	Lec 22	Introduction to Data Inference	ASG, Mid Term, F
	Lec 23	Uncertainty Quantification	
	Lec 24	Active Learning	
9	Lec 25	Bayesian Belief Networks (BBN)	
	Lec 26	Common methods for dimensionality	
		reduction	
	Lec 27	Linear Discriminant Analysis (LDA)	
10	Lec 28	Multidimensional Scaling	
	Lec 29	Introduction to Neural Networks, Historical	

		background and evolution	
	Lec 30	Overview of artificial neural networks	
		(ANNs),	
11	Lec 31	Basic concepts: neurons, activation functions,	
		weights, and biases	PR, Class Test 3, F
	Lec 32	Solving practical problems related to ANN	
	Lec 33	Solving practical problems related to ANN	
12	Lec 34	Deep Learning and Deep Neural Networks:	
		Introduction to deep learning	
	Lec 35	Benefits and challenges of deep learning	
	Lec 36	Architecture of deep neural networks	
13	Lec 37	Solving Problems with deep learning	
	Lec 38	Convolutional Neural Networks (CNNs):	
	Lec 39	Basics of image processing and computer	
		vision	ASG, F
14	Lec 40	Architecture of CNNs]
	Lec 41	Review	1
	Lec 42	Review	

Linkage of Course Outcomes with Assessment Methods and their Weights:

			СО	Bloom's Taxonomy
Comp	onents	Grading		
			CO1	C1, C2
	Class test 1-3	20%	CO2	C3
			CO3	C4
Continuous	Class Participation	5%	CO1	C1, C2
Assessment (40%)			CO3	C4
(40%)	Attendance	5%		
			CO2	C3
	Mid term	10%	CO3	C4
			CO4	C4-C5
Final Ex	am (60%)	60%	CO1	C1, C2

		CO2	C3
		CO3	C4
		CO4	C4-C5
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Reference Books:

- 2. Gareth James, Daniela Witten., Trevor Hastie, Robert Tibshirani, An Introduction to Statistical Learning with Applications in R
- 2. Jake VanderPlas, Python Data Science Handbook
- 3. William McKinney, Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython

Course Code: IPE 320 Course Name: Industrial Attachment

Credit Hour: 1.00 Contact Hour: 4 weeks

Level/Term: L-3, T-2

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: None

Synopsis/Rationale:

To gain the experience of interrelating theoretical knowledge with practical experiences at industries along with developing lifetime interpersonal skills like communication, leadership, and team management and so on.

Objective:

- 1. To acquire knowledge of what industrial engineers do
- 2. To know how the Industrial and Production engineers can improve a production system
- 3. To be able to apply basic industrial engineering tools
- 4. To be able to differentiate among different production processes

Course Outcomes (CO) and Genetic Skills:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO 1	Implement industrial and production engineering degree knowledge at industries.	C1-C4	1	2	1	PR, R
CO 2	Analyze basic structure of industries and processes in practice.	C1-C4	1	2	1	PR, R
CO 3	Explain how production planning, quality control and supply chain system works.	C3, C4	2	1	2	PR, R
CO 4	Develop communication, team working and other interpersonal skills.	C2-C4	2	2	1	PR, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; Pr-Presentation; R-Report; $F-Final\ Exam$)

Course Contents:

Students have to go to different industries by some groups to know the production process and have to submit a report and also have to give an oral presentation both in the industry (if needed) and IPE department (Must). Each group has to find a case in the industry and they have to provide suitable solution to that case.

Mapping of Course Outcomes (CO) and Program Outcomes:

Course Learning Outcomes				Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and	Sustainability	Ethics	Communication	Individual and Team Work	Life Long Learning	Project Management and
		PO1	PO2	P03	PO4	PO5	PO6	PO7		PO8	PO9	PO10	P011	PO12
CO1	Implement industrial and production engineering degree knowledge at industries.	✓	✓					✓	,					
CO2	Analyze basic structure of industries and processes in practice.			✓										✓
CO3	Explain how production planning, quality control and supply chain system works.				✓		✓							
CO4	Develop communication, team working and other interpersonal skills.										✓	✓	✓	

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Daily assessment by supervisor at industries	60
Presentation, Interview	3
Assessment of Industrial consulates	14
Report submitting	20
Assessment by supervisor at Department	3
Total	100

Teaching Methodology:

Daily assessment by supervisor at industries, Presentation, Interview, Assessment of Industrial consulates, Assessment by supervisor at department, Report submitting.

Attachment schedule:

Week 1	Introduction
Week 2	Individual projects assigned by industrial supervisor
Week 3	Individual projects assigned by industrial supervisor
Week 4	Presentation, Report Submitting

Linkage of Course Outcomes with Assessment Methods and their Weights:

	Assessment Strategies	CO	Bloom's	
Components			Taxonomy	
	Daily assessment by supervisor at	20%	CO 1	C1-C4
	industries		CO 3	C2-C4

			CO 4	C2
	Assessment of Industrial consulates	10%	CO 2	C3, C4
Continuous Assessment			CO 4	A3
(50%)	Assessment by supervisor at		CO 1	C1-C4
	Assessment by supervisor at Department	20%	CO 2	C3, C4
			CO 3	C2-C4
			CO 1	C1-C4
Presentation,	Interview, Report (50%)	50%	CO 2	C3, C4
ĺ	, 1		CO 3	C2-C4
			CO 4	C2
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Reference Books

As per requirements from the books suggested to important courses covered in the program.

Course Code: IPE 351 Course Name: Fluid Mechanics and Machinery

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: Level 3/ Term I

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisite: None

Rationale:

To introduce the students to different Fluid flow patterns and the fundamental flow cases such as free shear flows, Specific applications of these flow cases are then given through the study of internal flow systems and external flows around air, different fluid power driven machineries and components, Fluid turbo-machinery theory, performance characteristics of centrifugal and axial flow fans, compressors, pumps and turbines, fluid vibrations and sound, water hammer, introduction to fluid power controls and fluid amplifiers, operating principle and design.

Objectives:

- 1. To familiarize students with the essential ideas of fluid mechanics
- 2. To familiarize students with the conservation principles governing fluid streams
- 3. To be able to compute forces on bodies in liquid flows
- 4. To analyze the familiarity with current practice in fluid and aerodynamic measurement
- 5. To study the principles to a variety of real-world engineering applications including simple flow networks and pump & turbine design
- 6. To analyze different practical engineering machineries

Course Outcomes (CO) & Generic Skills:

	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO 1	Identify how properties of fluids change with temperature and their effect on pressure and fluid flow	C1-C2			1, 4, 6	T, M, F
CO 2	Define the relationship between pressure and elevation as it relates to manometers, barometers and other pressure measuring devices	C1	1		4, 6	F
CO 3	Calculate forces on a plane and buoyancy on a body submerged in a static fluid	C1-C2	1		2, 5, 6	T, M, F
CO 4	Demonstrate knowledge on different type of flows and determine sonic velocity in a fluid	C1-C3				T, M, F, ASG
CO 5	Explain the different fluid machines such as turbines, pumps etc.	C1-C2	1		4, 6	T, M, F, ASG

 $(CP-Complex\ Problems, CA-Complex\ Activities, KP-Knowledge\ Profile, T-Test; M-Mid; PR-Project\ ; Q-Quiz; ASG-Assignment; Pr-Presentation; R-Report; F-Final\ Exam)$

Course Contents:

a. Main Contents:

Fundamental concepts; Fluid statics; Hydrostatic forces; Pressure distribution; Continuity, momentum and energy equation; Fluid kinematics; Fluid flow; Turbines; Pumps.

b. Detailed Contents:

- **1. Fundamental concept:** Of fluid as a continuum; Fluid properties: classification of fluid flows (laminar, turbulent, real flows), density and specific gravity, compressibility and bulk modulus, viscosity, surface tension and capillarity;
- **2. Fluid statics:** Basic hydrostatic equation, concept of hydrostatic pressure distributions in static incompressible and compressible fluids, manometry;
- **3. Hydrostatic forces:** On floating and submerged surfaces, buoyant force, Metacenter and metacentric height, stability and buoyancy of floating and submerged bodies; Forces on plane and curved surfaces;
- **4. Pressure distribution:** Of a fluid in a rotating system; relation between system approach and control volume approach;
- **5. Continuity, momentum and energy equations:** special forms of energy and momentum equations and their applications (Bernoulli's equations, limitations and applications);
- **6. Fluid kinematics:** Pressure, velocity and flow measurement devices, Lagrangian and Eulerian descriptions of fluid flow, deformation of fluid elements, Reynolds transport theorem and Reynolds number regimes, one dimensional fluid flow, incompressible and in viscid flow, two dimensional fluid flow, laminar and turbulent flows, developing and developed pipe flows, flow through converging-diverging nozzles, vorticity and rotationality;
- **7. Fluid flow:** fundamental relations of compressible flow; Speed of sound wave; Stagnation states for the flow and ideal gas; Flow through converging diverging nozzles; Normal shock; Real fluid flow
- **8. Turbines:** Rotodynamic and positive displacement machines; Velocity diagrams and Euler pump/turbine equation; Impulse and reaction turbines; Centrifugal and axial flow pumps; Deep well turbine pumps; Dimensional analysis applied to fluid machinery: specific speed, unit power, unit speed, unit discharge;
- **9. Pumps:** Performance and characteristics of turbines and pumps; Design of pumps; Cavitation; Reciprocating pump, gear and screw pumps

Mapping of Course Outcomes and Program Outcomes:

Trapping of course cureons													
Course Learning Outcomes	Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Project Management and Finance) C	

		PO1	P02	P03	P04	PO5	P06	P07	P08	P09	PO10	PO11	PO12
		PC	PC	Δ	PC	P	PC	PC	PC	PC	PO	PO	РО
CO1	Identify how properties of fluids change with temperature and their effect on pressure and fluid flow	٧	٧		٧								
CO2	Define the relationship between pressure and elevation as it relates to manometers, barometers and other pressure measuring devices	٧	٧		٧								
CO3	Calculate forces on a plane and buoyancy on a body submerged in a static fluid	٧	٧	٧									
CO4	Demonstrate knowledge on different type of flows and determine sonic velocity in a fluid	٧	٧										
CO5	Explain the different fluid machines such as turbines, pumps etc.	٧	٧								٧		

Teaching-learning and Assessment Strategy:

Teaching and learning activities	Engagement (hours)
Face-to-face learning	
Lecture	42
Practical/ Tutorial/ Studio	-
Student-centred learning	-
Self-directed learning	
Non face-to-face learning	14
Revision	21
Assessment preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	122

Teaching methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

Lecture Schedule:

Week	Topics
1	Of fluid as a continuum; Fluid properties: classification of fluid flows (laminar,
	turbulent, real flows), density and specific gravity, compressibility and bulk
	modulus, viscosity, surface tension and capillarity;
2	Basic hydrostatic equation, concept of hydrostatic pressure distributions in
	static incompressible and compressible fluids, manometry;
3	Hydrostatic forces- on floating and submerged surfaces, buoyant force,
	Metacenter and metacentric height, stability and buoyancy of floating and
	submerged bodies;
4	Forces on plane and curved surfaces
5	Pressure distribution - Of a fluid in a rotating system; relation between system
	approach and control volume approach;

6	Special forms of energy and momentum equations and their applications					
	(Bernoulli's equations, limitations and applications);					
7	Pressure, velocity and flow measurement devices					
8	Lagrangian and Eulerian descriptions of fluid flow, deformation of fluid					
	elements, Reynolds transport theorem and Reynolds number regimes,					
9	One dimensional fluid flow, incompressible and in viscid flow, two					
	dimensional fluid flow, laminar and turbulent flows, developing and developed					
	pipe flows,					
10	Flow through converging-diverging nozzles, vorticity and rotationality;					
11	Fundamental relations of compressible flow; Speed of sound wave; Stagnation					
	states for the flow and ideal gas;					
12	Flow through converging – diverging nozzles; Normal shock; Real fluid flow					
13	Rotodynamic and positive displacement machines; Velocity diagrams and					
	Euler pump/turbine equation; Impulse and reaction turbines; Centrifugal and					
	axial flow pumps; Deep well turbine pumps; Dimensional analysis applied to					
	fluid machinery: specific speed, unit power, unit speed, unit discharge;					
14	Performance and characteristics of turbines and pumps; Design of pumps;					
	Cavitation; Reciprocating pump, gear and screw pumps					

Linkage of Course Outcomes with Assessment Methods and their Weights:

Assessment Strategies		СО	Bloom's Taxonomy			
Components		Grading	CO	Bloom's Taxonomy		
Continuou s Assessmen t (40%)	Class test 1-	20%	CO 1-4	C 1-4, A 1-2, P 1-2		
	Class Participatio n	5%	CO 1-2	C 1-4, A 1-2, P 1-2		
	Mid term	15%	CO 1-4	C 1-6, P 1-4		
Final Exam		60%	CO 1-5	C 1-6, P 1-4		
Total Marks		100%				

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

- 1. Fluid Mechanics: Fundamentals and Applications by Yunus A. Cengel, John Cimbala.
- 2. Mechanics of Fluids by Irving Herman Shames.
- 3. Fluid Mechanics through Worked out Problems- A.C. Mandal & M.Q. Islam
- 4. Fluid Mechanics (including Hydraulic Machines) by Jain A.K
- 5. Hydraulic Machines Dr. Md. Quamrul Islam

Reference Site:

Google Classroom (to be announced)

COURSE INFORMATION						
Course Code	: IPE 352	Lecture Contact Hours	: 1.50			
Course Title	: Fluid Mechanics & Machinery Sessional	Credit Hours	: 0.75			
DDE DECLIIC						

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course provides an introduction to the principles of fluid mechanics of mechanical systems. The focus is to illustrate practical engineering applications of these principles in relation to simple fluid systems. The learning approach is to apply engineering principles to performance analysis and prediction of simple fluid systems. This will provide a basis for understanding how performance can be improved. Student will acquire an understanding of the essential theoretical basis of the fluid mechanic sciences and their application to a range of problems of relevance to practical engineering.

OBJECTIVE

- 1. This course provides an introduction to the principles of fluid mechanics of mechanical systems.
- 2. The focus is to illustrate practical engineering applications of these principles in relation to simple fluid systems.
- 3. By the end of this course students should be able to understand the basic principles and analysis of both static and dynamic fluid systems

LEARNING OUTCOMES & GENERIC SKILLS

No.		Corresponding PO	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Identify how properties of fluids change with temperature and their effect on pressure and fluid flow.	1	C3			1	R, Q, LT
CO2	Illustrate practical engineering applications of these principles in relation to simple fluid systems.	1	C2			1	R, Q, LT
CO3	Evaluate and design fluid engineering systems	2	C5			5	R, Q, LT
CO4	Build simple solutions to a range of problems in basic fluid flows.	4	C3			3	R, Q, LT

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, LT – Lab Test, PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Experiments:

Expt-01: Verification of Bernoulli's Equation

Expt-02: (a) Calibration of rectangular notch

(b) Calibration of triangular notch (V notch)

Expt-03: Study of flow through an Orifice meter and Venturi Meter (Combined)

Expt-04: Study of Pipe friction (Merged with below two)

(b) Determination of Pressure losses in different types of elbows (Different types of pipe bent)

Expt-05: (a) Introduction to Centrifugal Pump Characteristics (Merged with below three)

- (b) Performance test of a single centrifugal pump
- (c) Performance test of centrifugal pumps connected in series
- (d) Performance test of centrifugal pumps connected in parallel

Expt-06: (a) Study of Propeller Turbine Characteristics

(b) Performance test of a Pelton wheel and Francis Turbine.

Expt-07: Study about, compressor (Single Stage and Multistage) and Blowers

CO-PO MAPPING

	PROGRAM OUTCOMES (PO)												
No.	Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Identify how properties of fluids change with temperature and their effect on pressure and fluid flow.												
CO2	Illustrate practical engineering applications of these principles in relation to simple fluid systems.	✓											
CO3	Evaluate and design fluid engineering systems		√										

CO4 Build simple solutions to a range of problems in basic fluid flows.				✓									
--	--	--	--	---	--	--	--	--	--	--	--	--	--

Justification	Justification for CO-PO mapping:						
Mapping	Corresponding Level of matching	Justifications					
CO1-PO1	3	In order to identify the basics of fluid mechanics, the knowledge of engineering fundamental would be required.					
CO2-PO1	3	In order to perform the experiments, practical engineering applications of these principles in relation to simple fluid systems knowledge would be required					
CO3-PO2	2	In order to solve and design fluid engineering system, the knowledge of engineering fundamentals is also required.					
CO4-PO4	3	For performing the experiments, basic simple solutions to a range of problems in basic fluid flows is needed.					

TEACHING LEARNING STRATEGY Teaching and Learning Activities Engagement (hours) Face-to-Face Learning Lecture 14 28 Practical Total 42 Self-Directed Learning Preparation of Lab Reports 10 Preparation of Lab Test 10 Preparation of presentation 5 Preparation of Quiz 10 Engagement in Group Projects 20 Formal Assessment Continuous Assessment 14

Final Quiz	1
Total	112

TEACHING METHODOLOGY

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

COURSE	SCHEDULE
Week-1	Expt-01: Verification of Bernoulli's Equation
Week-3	Expt-02: (a) Calibration of rectangular notch (b) Calibration of triangular notch (V notch)
Week-5	Expt-03: Study of flow through an Orifice meter and Venturi Meter (Combined)
Week-7	Expt-04: Study of Pipe friction (Merged with below two)
	(b) Determination of Pressure losses in different types of elbows (Different types of pipe bent)
Week-9	Expt-05: (a) Introduction to Centrifugal Pump Characteristics (Merged with below three)
	(b) Performance test of a single centrifugal pump
	(c) Performance test of centrifugal pumps connected in series
	(d) Performance test of centrifugal pumps connected in parallel
Week-11	Expt-06: (a) Study of Propeller Turbine Characteristics
	(b) Performance test of a Pelton wheel and Francis Turbine.
Week-13	Expt-07: Study about, compressor (Single Stage and Multistage) and Blowers
Week-14	Quiz Test

Components		Grading
Continuous Assessment (60%)	Lab participation and Report	30%
	Labtest-1, Labtest-2	30%
Lab Quiz		40%
	Total Marks	100%

REFERENCE BOOKS

- 1. Fluid Mechanics-1, Victor, L. Streeter.
- 2. Fluid Mechanics: Fundamentals and Applications by Yunus A. Cengel, John Cimbala.
- 3. Mechanics of Fluids by Irving Herman Shames.
- 4. Fluid Mechanics Through Worked out Problems- A.C. Mandal & M.Q. Islam

Course Code: IPE 400 Course Title: Final Year Design & Research Project

Credit Hour: 3.00 (6.00 in 2 consecutive semesters in L-4); Contact Hour: 6.00

Course Curriculum: Outcome Based Education (OBE)

Pre-requisites: (1) IPE 105: Engineering Materials

(2) IPE 107: Engineering Economy(3) ME 160: Engineering Drawing(4) IPE 243: Mechanics of Solids

(5) IPE 271: Engineering Mechanics and Theory of Machines

(6) IPE 303: Product Design

Synopsis/Rationale:

The Final Year Design and Research Project (FYDRP) aims to further develop the skills of students to analyze and solve engineering problems in scientific way. It provides students the opportunities to apply all the engineering knowledge obtained through previous course works. They will get the opportunity to execute the innovative and goal-oriented research approach in solving complex scientific problems by working in a team of two, three or more members. Throughout these research experiences, not only they will strengthen their research skills, but they will also realize the significance of scientific research on our society.

Objectives:

- 1. To develop skills in critical review of relevant research literature and gain in-depth understanding of the related work and research findings.
- 2. To be able to identify gaps in the current knowledge and its impact on society, environment and sustainability.
- 3. To be able to design experiments and/or develop models to breeze the research gap.
- 4. To understand the theoretical underpinnings and procedures to be employed forcompleting a project or research thesis.
- 5. To be able to design and perform experiments and utilize obtained results for deriving at research conclusions.
- 6. To use modern tools for simulation, modeling, experimentation and validation inorder to achieve project or research goals.
- 7. To be competent in oral presentations to be delivered in public to convince the examiners.
- 8. To work effectively in a team to successfully complete the project wok
- 9. To be competent in oral presentations to be delivered in public to convince the examiners.
- 10. To work effectively in a team to successfully complete the project wok
- 11. To observe ethical norms at the stage of literature review and during the performance of the entire project and thesis work
- 12. To exhibit engineering management and financial management skills in executing the project and thesis work

Course Outcomes (CO):

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxono my	СР	CA	KP	Assessmen t Methods
CO1	Search and critically review relevant research literature to evaluate existing research and technologies relevant to the field of research to gain an in-depth understanding of the related work and research findings.	C2-C5	1	1	8	R
CO2	Identify the research gaps in existing research and formulate research objectives and hypotheses to solve these gaps.	C4-C6	1	2	7, 8	R, Pr
CO3	Explore the impact of proposed research on society, environment and sustainability.	C1-C4			6	R
CO4	Demonstrate the theory, methods and procedures to be employed to complete the research project.	C2, C3	2	3	1, 7, 8	R
CO5	Develop experimental setups to perform experiments to acquire experimental results for validation of research hypotheses.	C3, C4	1	3	5, 6	R
CO6	Apply modern tools (hardware and software) for modeling, simulation and experimentation in order to achieve research goals.	C3-C6	1	1	4, 6	R, Pr

CO7	Develop proficiency in technical writing by summarizing the research findings.	C5	1	2	6	R
CO8	Demonstrate mastery of oral presentations to convince the examiners.	C3	1		6, 7	Pr
CO9	Demonstrate the ability to work successfully as a member of a team of two, three or more members to successfully complete the research project.	C3			7	R, Pr
CO 10	Demonstrate adherence to ethical norms throughout the entire period of project performance and thesis writing.	C3			7	R, Pr
CO1	Apply project and financial management skills in accomplishing the research project.	C4			7	R, Pr

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; Pr-Presentation; R-Report; F-Final Exam)

Course Contents:

Working in groups of two under the direction and continuing guidance of a project supervisor, the research project/thesis requires independent thought and action. It will simulated professional context where students, as engineers, have to investigate a particular problem in some depth and produce both an analysis of the problem and its innovative solution. The basis of the solution must include a formal thesis and a presentation.

The contents and skills needed to be reviewed or mastered by the students will depend on the type of project or research. Some will focus primarily on laboratory work and can involve substantial liaison with local industry, while others may be more analytical or computational and involve working with research institutes. It must be noted that individual grades are awarded for this research project/thesis based on continuous and formative performance.

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Consultation with Supervisor	42
Practical / Tutorial / Studio	20
Student-Centred Learning	-

Self-Directed Learning	
Non-face-to-face learning	40
Consultation with collaborators	20
Presentation and Report Preparations	40
Formal Assessment	
Continuous Assessment (mini presentations, preliminary reports)	5
Final Presentations	0.5
Total	167.5

Linkage of Course Outcomes with Assessment Methods and their Weights:

,	Assessment Strategies	Course Outcome	Bloom's Taxonomy	
	Components	Grading		
	Literature Review	20%	CO1	C2-C5
	Significance of research project on society	8%	CO2	C1-C4, C6
	Impact of research on environment and sustainability	5%	CO3	C1-C4
	Methodology	10%	CO4	C2-C5
Final Year Thesis	Model formulation and design of experiment	10%	CO5	C3, C4
	Application of modern tools in thesis	8%	CO6	C3, C4, C6
	Final thesis report writing	10%	CO7	C5
	Practice of ethical norms in accomplishment of thesis	5%	CO8	C3
	Team work	8%	CO10	C3

Time management and financial management	6%	CO11	C4	
Thesis defense	10%	CO9	C3	
presentation	10%	009		

$\underline{(CO = Course\ Outcome,\ C = Cognitive\ Domain,\ P = Psychomotor\ Domain,\ A = Affective}\\ \underline{Domain)}$

Mapping of Course Outcomes and Program Outcomes:

No.					T		T						,
	Course Outcomes (CO) of the Course	Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability		Communication	Individual and Team Work	Project Management and Finance	Life Long Learning
		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Search and critically review relevant research literature to evaluate existing research and technologies relevant to the field of research and to gain an indepth understanding of the related work and research findings.				✓								
CO2	Identify the research gaps in existing research and formulate research hypotheses to solve these gaps.	✓			✓								
CO3	Explore the impact of proposed research hypotheses on society, environment and sustainability.							✓					
CO4	Demonstrate the theory, methods and procedures to be employed to complete the research project.	✓											

CO5	Develop experimental setups to perform experiments to acquire experimental results for validation of research hypotheses.		✓					✓			
CO6	Apply modern tools (hardware and software) for modeling, simulation and experimentation in order to achieve research goals.		✓	✓		✓					
CO7	Develop proficiency in technical writing by summarizing the research findings.							✓	✓		
CO8	Demonstrate mastery of oral presentations by being able to deliver public presentation to convince examiners.							✓			✓
CO9	Demonstrate the ability to work in a team of two, three or more members to successfully complete the research project.								✓		✓
CO1 0	Demonstrate commitment towards ethics in all affairs pertaining to project or thesis.				✓		✓				
CO1 1	Ensure the time management and financial management skills in accomplishing research project successfully.									✓	✓

Lecture Schedule:

Week	Consultation with supervisor	Topics	Assessment
1	Meeting 1	Introductory meeting, norming, group dynamics discussion, guidance	
2	Meeting 1	Feedback on progress, consultation on problems	R
3	Meeting 1	Discussion with collaborators (if any), reviewing and modifying approach	
4	Meeting 1	Feedback	
5	Meeting 1	Discussion and consultation	

6	Mock Presentation	Suggestions on improving write-up and presentation	R, Pr
7	Mid term Presentation	Evaluation of students' performance and feedback on improvement. Guidance if needed.	,
8	Meeting 1	Consultation of project report/thesis writing of relevant chapters	D
9	Meeting 1	Feedback on writing and findings	R
10	Meeting 1	Feedback and consultation	
11	Meeting 1	Final adjustments and validation of work	
12	Meeting 1	Review of current progress and guidance on meeting the expected deadlines and future work.	
13	Mock Presentation	Consultation for preparation of final report/thesis and final presentation	R, Pr
14	Final Review meeting 1	Review and feedback of students' performance. Appreciation of goals and targets met. Preparation of final report and presentation	

(PR – Project; ASG – Assignment; PR – Presentation; R - Report; F – Final Exam)

Teaching Methodology:

Consultation, discussion based on meetings, feedback on presentation and thesis etc.

Text and Ref Books:

- g) Research Design: Qualitative, Quantitative and Mixed Methods Approaches, 4th Edition, John W. Creswell

- h) Shigley's Mechanical Engineering Design, SI edition Richard Budynas, Keith Nisbett
 i) The Mechanical Design Process, 7th edition, David Ullman
 j) The Research Methods Knowledge Base, 3rd Edition, William M. K. Trochim & James P. Donnelly

Course Code: IPE 405 **Course Name:** Supply Chain Management

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: Level 4/Term I

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisite: None

Rationale:

The main course's objective is to teach students the fundamentals of a supply chain management system and facilitate professional exposure. This course provides an introduction to the supply chain. Supply Chain Management is about the management of material, information, and finance flows in multi-stage production-distribution networks.

Objectives:

- 1. To introduce students to procedure of supply chain system
- 2. To expose students to supply chain networks based on transportation systems
- 3. To develop students' ability to analyze the critical performance parameters of a supply chain system
- 4. To make students familiarize about suppliers and selection of the best ones
- 5. To introduce students to the detailed phases of supply chain and their long-term control

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain the major areas of supply chain	C1-C3			4,7	T, MT
CO2	Apply the knowledge of fundamentals of supply chain to make procurement decisions	C2-C4	1		2-4	MT
СОЗ	Evaluate different modes of transportation with respect to minimum cost	C2-C5	1		2-4	T, F
CO4	Apply the inventory analysis knowledge to prepare optimum inventory policy	C2-C4	1		2-4	T, F
CO5	Analyze multiple warehousing and material handling options to choose the most appropriate one depending on the facility	C3	2		2-4	F, ASG

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; MT – Mid Term; PR – Project; Q – Quiz; ASG – Assignment; PR – Presentation; R - Report; F – Final Exam)

Course Contents:

a. Main Contents:

Introduction to supply chain management, Materials planning, Procurement management, Inventory systems management, Stores management, Physical distribution

b. Detailed Contents:

Introduction to supply chain management: supply chain, systems approach to management, materials management, major areas of supply chain management, forward and backward linkage; Materials planning: role of forecasting, market demand estimation.; Procurement management: procurement cycle, materials sourcing, vendor evaluation and selection, make-buy decision, multicriteria decision making in supplier selection, negotiation, transportation, logistics, incoming materials inspection; Inventory systems management: different types of product structures for materials planning, management of raw materials, work-in-process (WIP), finished goods and spare parts inventories, lead time management, cycle time reduction; Stores management: stores layout planning, addressing systems, codification systems, traceability, physical verification and counting, surplus and waste management; Physical distribution: network planning, packaging, materials handling, carrier systems, distribution inventory, legal aspects and common rules of transportation.

Mapping of Course Outcomes and Program Outcomes:

Co	Course Learning Outcomes		Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Project Management and Finance	Life Long Learning
			P02	PO3	P04	P05	P06	P07	P08	P09	PO10	PO11	P012
CO1	Explain the major areas of supply chain.	٧	٧					٧					
CO2			٧										
CO3	Evaluate different modes of transportation with respect to minimum cost.		٧										
CO4	Apply the inventory	٧	٧							٧			

	analysis knowledge to							
	prepare optimum							
	inventory policy.							
CO5	Analyze from multiple							
	warehousing and material							
	handling options to	-1	-1				-,	
	choose the appropriate	V	٧				٧	
	one depending on the							
	facility.							

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	40
Revision	20
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	127

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Assignments, Class Tests, Exams, Feedback at every step.

Lecture Schedule:

Week	Lecture	Topics	TEST
1	Lec 1	Supply chain, systems approach to management	
	Lec 2	Materials management	
	Lec 3	Major areas of supply chain management	
2	Lec 4	Forward and backward linkage	
	Lec 5	Role of forecasting, market demand estimation	
	Lec 6	Procurement cycle	
3	Lec 7	Materials sourcing	Class Test 1
	Lec 8	Make-buy decision	
	Lec 9	Multi-criteria decision making in supplier selection	

4	Lec 10	Negotiation	
	Lec 11		
	Lec 12	Transportation	
5	Lec 13	Logistics	
	Lec 14	1	
	Lec 15	Incoming materials inspection	
6	Lec 16	Different types of product structures for materials	Class Test 2
		planning	
	Lec 17	Management of raw materials	
	Lec 18	Work-in-process (WIP)	
7	Lec 19	Finished goods and spare parts inventories	
	Lec 20		
	Lec 21	Cycle time reduction	
8	Lec 22		
	Lec 23	Lead time management	
	Lec 24		
9	Lec 25		Mid Term /
	Lec 26	Stores layout planning	Project
	Lec 27		
10	Lec 28	Addressing systems	
	Lec 29	Codification systems	
	Lec 30	Traceability	
11	Lec 31	Physical verification and counting	
	Lec 32		Class Test 3
	Lec 33	- Surplus and waste management	
12	Lec 34		
	Lec 35	Network planning	
	Lec 36	1	
13	Lec 37	Packaging, materials handling	
	Lec 38	Carrier systems, distribution inventory	
	Lec 39	Legal aspects and common rules of transportation.	
1.4	I as 40		
14	Lec 40	Baylay alass	
	Lec 41	Review class	
	Lec 42		

Linkage of Course Outcomes with Assessment Methods and their Weights:

Asse	essment Strategi	es	CO	Dlagar's Taylor and
Components	_	Grading	СО	Bloom's Taxonomy
			CO 1	C1-C3
	Test 1-3	20%	CO 3	C2-C5
			CO 4	C2-C4
Continuous	Class	50/	CO 2	C2-C4
Assessment	Participation	5%	CO 5	C3
(40%)	Attendance	5%	-	-
	Middon	10%	CO 1	C1-C3
	Mid term	10%	CO 2	C2-C4
			CO 3	C2-C5
Final Exam		60%	CO 4	C2-C4
			CO 5	C3
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

- 1. "Supply chain Management" by Sunil Chopra, Peter Meindl, 2016
- 2. "Principles of Supply Chain Management: A Balanced Approach" by J. D. Wisner, 2018
- 3. Green Supply Chain Management, "Logistics & Transportation A Canadian Perspective", 2009

Reference Site:

https://classroom.google.com/ (To be announced)

Course Code: IPE 411 Course Name: CAD/CAM

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-4, T-1

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: None

Synopsis/Rationale:

To design, analyze and select commonly used robots and implement NC, CNC program based manufacturing using computer controlled machines and rapid tooling techniques.

Objectives:

- 1. To introduce the essential components of computer graphics systems such as coordinate systems, transformation of 2D and 3D objects, projections and views of 2D and 3D objects.
- 2. To introduce the different types of mathematical representation procedures of geometric modeling such as mathematical representation of curves, surfaces and solids.
- 3. To develop skills for designing and integrating industrial robots into manufacturing processes.
- 4. To investigate diverse applications of industrial robots, gaining experience in applications of automation.
- 5. To examine and apply foundational principles to design and optimize automated production for enhanced efficiency.

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessmen t Methods
CO1	Explain the basic concepts of the computer graphics display used in CAD.	C4-C6	1, 2		2	T, M, F
CO2	Explain the basic concepts of the geometric modeling used in CAD.	C3-C6	1, 2	3	2, 3	T, F
CO3	Design , apply and integrate industrial robots, integrating them into production line for flexible automation.	C3, C4	3	3	3,4, 5	T, M, F
CO4	Explore fundamental principles for designing and optimizing automated production lines, to enhance efficiency.	C4, C5, C6	3	3	3-6	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, CT - Class Test; PR - Project; Q - Quiz; ASG - Assignment; Pr - Presentation; R - Report; Midterm exam-M; F - Final Exam)

Course Contents:

Computer Graphics: Coordinate systems, 2D and 3D Transformation of object: translation, scaling, reflection or mirror, rotation; Projection and views: parallel projection and view, oblique projection and view, perspective projection and view.

Geometric Modeling: requirements of geometric modeling, designing and drafting, representation of geometric modeling, wireframe modeling, mathematical representation of curves, parametric and non-parametric representation of curve, analytical curves, synthetic curves, polynomial curves, Hermite cubic spline curve, Bezier curve, b-spline curve, non-uniform rational b-spline curve, mathematical representation of surfaces, analytical surfaces, synthetic surfaces, Bezier surface, b-spline surface, solid modeling, topology and geometry, solid representation, set operations in solid modeling, solid modeling schemes: constructive solid geometry (CSG), boundary representation (b-rep), sweeping.

Industrial Automation: Robot anatomy, Drive systems of robots, Electrical and hydraulic systems, AC and DC drives, Servo drives using voltage control, current control and direct torque control, PID control systems and performance issues. Feedback systems, Single loop and multi-loop, DSP based motion control systems, Sensors for industrial robots, encoders, resolvers, hall-effect sensors, acoustic sensors, ultrasonic and optical/infrared sensors, Elements of robot vision, Integration using PLCs, digital motion planning systems

Computer Control Machines: Introduction, classification, design features and control features of CNC machines; Programming: G and M Code programming, Offline (APT-like) programming; free form surface machining: Isoparametric, Isoplanar and Isoscallop machining strategies.

Mapping of Course Outcomes and Program Outcomes:

					Pro	gran	ı Ou	tcom	es (P	O)			
No.	Course Outcomes (CO) of the Course	Engineering Knowledge	Problem Analysis	Design / Development of Solutions	P Investigation	Wodern Tool Usage	The Engineer and Society	L Environment and Sustainability	∞ Ethics	6 Communication	10 Individual and Team Work	Project Management and Finance	Life Long Learning
CO1	Explain the basic concepts of the computer graphics display used in CAD.	√	✓	<i>✓</i>	7	3	O	,	0		10	11	12
CO2	Explain the basic concepts of the geometric modeling used in CAD.	✓	✓	✓									
CO3	Design, apply and	✓		✓									

	integrate industrial robots, integrating them into production line for flexible automation.							
CO4	Explore fundamental principles for designing and optimizing automated production lines, to enhance efficiency.	>	✓	✓				

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	40
Revision	20
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	127

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Visualization using Computer Simulations, Assignments, Class Tests, Exams, Feedback at every step.

Lecture Schedule:

Week	Lecture	Topics	ASSESSMENT
1	Lec 1	Introduction to Computer-Aided Design	
		(CAD) and Computer-Aided Manufacturing	
		(CAM).	
	Lec 2		
		Introduction to computer graphics. Different	Class Test 1, ASG,
		types of coordinate systems considered in	\mathbf{F}
		CAD. Transformations between coordinate	
	Lec3	systems.	
		Different types of geometric transformation of	
		2D object in coordinate systems.	
2	Lec 4	Different types of geometric transformation of	
		3D object in coordinate systems.	
	Lec 5-6	Different types of projections and views of	
		object.	
3	Lec 7	Introduction to geometric modeling and	
		different types of three-dimensional	
		representations of geometric model.	
	Lec 8	Wireframe modelling: wireframe data base,	
		wireframe entities, construction of objects	
		wireframe modelling.	
	Lec 9	Introduction to mathematical representation of	
		curve.	
4	Lec 10	Parametric and non-parametric representation	
		of curve and Introduction to curve fitting.	
	Lec 11-	Analytic and synthetic curves. Hermite cubic	
	12	spline curve.	
5	Lec 13	Bezier curve.	
	Lec 14	B-spline curve.	
		Topology and Geometry. Solid entities.	Class Test 2, ASG,
	Lec 15		PR, F
6	Lec 16	Solid representation. Set operations used in	, _
		solid modelling.	
	Lec 17	Solid modelling scheme: Constructive Solid	
_	Lec 18	Geometry (CSG) method	
7	Lec 19	Constructive Solid Geometry (CSG) method	
	Lec 20	Boundary representation (b-rep) method.	
	Lec 21	Sweeping method.	
8	Lec 22	Introduction to Automation, CAD/CAM/CAE:	
	Lec 23	Overview of product life cycle, Essential	
	Lec 24	components of soft automation (CAD and	
		CAM).	
		NC Machine tool: Historical Development,	Mid Term, F
		Principle of Numerical Control, Classification	,
		of Numerical Control, Numerical Control	
		System.	

		Principle of Numerical Control, Classification	
		of Numerical Control, Numerical Control	
		System.	
9	Lec 25	Coordinate system, NC Program storage	
	Lec 26	media,	
	Lec 27	Symbolic codes NC words, part programming,	
		tool radius compensation.	
		G&M code applications and NC Par	
		Programming examples and problem solving.	
10	Lec 31	APT programming features	
	Lec 32	Definition of Geometry statements	
	Lec 33	Geometry statement (examples)	
11	Lec 28	Definition of Motion statements	
	Lec 29	Definition of Motion statements	
	Lec 30	Motion statement (examples)	
12	Lec 34	Geometry definition for turning and 21/2 axis	
	Lec 35	milling	
	Lec 36	Tool path generation, simulation and	
		verification	
		free form surface machining	Class Test 3, ASG,
13	Lec 37	Overview, specific, RP &M process,	R, PR, F
	Lec 38	Application of RP and M, Stereo lithography	1,11,1
	Lec 39	process,	
		Selective Laser Sintering, 3D Printing, Direct	
		Tooling example	
14	Lec 40	Geometry input, Support Structure, Slice and	
	Lec 41	Merge	
	Lec 42	Software technology for RP&M	
		Review	

 $(PR-Project\;;\; ASG-Assignment;\; PR-Presentation;\; R\;\text{--}\; Report;\; F-Final\; Exam)$

Linkage of Course Outcomes with Assessment Methods and their Weights:

	Assessment Strat	egies	CO	Plaam's Taxonomy		
Components		Grading	CO	Bloom's Taxonomy		
Continuous Assessment (40%)	Test 1-3		CO1	C4-C6		
		200/	CO2	C3-C6		
		20%	CO3	C3, C4		
			CO4	C4, C5, C6		

	Class Participation	5%	-	-
	Attendance	5%	-	-
	Mid term	10%	CO 1	C4-C6
	Wild term	1070	CO 3	C3, C4
			CO 1	C4-C6
Final Exam		60%	CO 2	C3-C6
Finai Exam		00%	CO 3	C3, C4
			CO 4	C4, C5, C6
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

d) CAD/CAM: Computer-aided Design and Manufacturing - Mikell Groover

e) CAD/CAM theory and practice - Ibrahim Zeid

f) CAD/CAM/CIM - P. Radhakrishnan, S. Subramanyan, and V. Raju

Course Code: IPE 412 Course Name: CAD / CAM Sessional

Credit Hour: 0.75 Contact Hour: 1.5

Level/Term: L-4, T-2

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: Concurrent with IPE 411

Rationale:

The main aim is the use of computer systems to aid in the creation, modification, analysis or optimization of a design.

Objective:

- 1. Create 2D and 3D computer drawings and models for manufacturing and prototyping.
- 2. Evaluate mechanical designs and select the proper access and materials for production.
- 3. Evaluate computer aided design models and assemblies based on critical thinking and problem-solving skills.
- 4. Apply design principles and rationale in a realistic and original design project.
- 5. Develop and present drawings and prototypes to the class.

Course Outcomes (CO) Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Create 2D and 3D computer drawings and model for manufacturing and prototyping.	C6	1	1,3	1,2	R
CO2	Evaluate mechanical designs and select the proper access and materials for production.	C3, C5	1, 2	1,2	5,6	R
CO3	Evaluate computer aided design models and assemblies based on critical thinking and problem solving skills.	C5	1, 2	1	5,6	ASG,R
CO4	Apply design principles and rationale in a realistic and original design project.	C3, C4	1	5	2	ASG, R
CO5	Develop and present drawings and prototypes to the class.	C4 – C6	1	5	6,7	PR,ASG, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; PR-Project; PR-Pro

Course Content:

Introduction to CAD/CAM, Geometric modeling, Computer graphics, Product Design and development using CATIA, Future directions for CAD/CAM, CAD/CAM Programming using MASTERCAM, Solid works CAD/CAM package.

$\label{lem:constraint} \textbf{Mapping of Course Outcomes:} \ \textbf{(CO)} \ \textbf{and Program Outcomes:}$

Course Learning Outcomes	Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team	Life Long Learning	Project Management and Finance
	PO1	PO2	PO3	P04	P05	P06	PO7	P08	P09	PO10	P011	PO12
CO1 To create 2D and 3D computer drawings and models for manufacturing and prototyping. CO2 Evaluate mechanical designs and select the proper access and materials for production.	√	√	√									
CO3 Evaluate computer aided design models and assemblies based on critical thinking and problem solving skills.		√	✓									

CO4	Apply design principles and rationale in a realistic and original design project.		✓						
CO5	Develop and present drawings and prototypes to the class.		✓	✓				✓	

Lecture schedule:

Week No	Content	Remark
1	Intro	
2	CATIA	Assignment (Extra)
3	CATIA	Submit Assignment 1
4	CATIA	Submit Assignment 2
5	CATIA	
6	Quiz 1	Submit Assignment 3
7	CATIA	Submit Assignment 4, 5
		20% Drawing of the presentation should be completed (will be
		discussed in class for specific need/struggle you are facing to
		draw the product assigned)
8	CATIA	Submit Assignment 6, Draft submission of the report
9	CATIA	Submit Assignment 7, Report submission, report Friday
10	Quiz 2	Submit Assignment 8
11	CATIA	Initial submission of the SolidWorks drawing (Group wise) for
		the <i>presentation</i> . At least 80% of the drawing should be
		completed by this time

12	CATIA	Submit Assignment 9, Submit an initial Draft of the Presentation
13	Presentation	Submit Assignment 10
14	Viva	

Linkage of Course Outcomes with Assessment Methods and their Weights:

Asses	Assessment Strate Components		СО	Dlaam's Townsmy	
Compo			CO	Bloom's Taxonomy	
			CO 1	C6	
	337 11		CO 2	C3, C5	
	Weekly	20%	CO 3	C5	
	Reports		CO 4	C3, C4	
			CO 5	C4 – C6	
Continuous	C1		CO 1	C6	
Assessment (70%)	Class Participa tion	Participa	400/	CO 2	C3, C5
(70%)			-	CO 3	C5
			CO 4	C3, C4	
	Presentat ion	10%	CO 5	C4 – C6	
			CO 1	C6	
			CO 2	C3, C5	
Final R	eport	30%	CO 3	C5	
	r		CO 4	C3, C4	
			CO 5	C4 – C6	
Total M	Iarks	100%			

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

1. CAD/CAM Lab Manual Book by Sathish D

Reference Site:

 $\underline{https:/\!/classroom.google.com\!/}\ (To\ be\ announced)$

Course Code: IPE 418 Course Name: Mechatronics & Industrial Automation Sessional

Credit Hour: 0.75 Contact Hour: 1.50

Level/Term: L-4, T-2

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: NA

Rationale:

This sessional course follows the Outcome Based Education (OBE) guidelines. The objective of this course is to instill in students the practical knowledge and skill to automate planning, production, material handling and control in the era of Industry 4.0. This course provides hands on experience on designing and maintaining automation system that have become part and parcel of modern industries.

Objectives:

- 1. To help students identify the basic components of manufacturing automation and categorize different types of automated production processes
- 2. Make students understand the performance and dynamic characteristics of industrial robots and the principles of industrial sensors
- 3. To develop the skills to apply electrical, mechanical and pneumatic actuators, design elementary mechanisms for automated machinery
- 4. Understand the operation of common industrial controllers (PLCs)

Course Outcomes (CO):

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO 1	Knowledge to apply principles of industrial automation to the solution of specific manufacturing challenges	C1-C3	1	2	2	Pr, R, Q
CO 2	Program and operate an industrial robot, setup and implement pneumatic circuits, setup and implement computer vision systems, material handling systems	C4-C6	2	2	1	ASG, R Pr, Q

	Integrate a number of these manufacturing					ASG, Q
CO 3	technologies in an automated work cells	C3-C6	2	2	2	

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; PR-Project; PR-Pro

Course Contents:

Industrial robotics: Industrial sensors and switches, PLC, Assembly machines (continuous transfer, intermittent transfer), Industrial control

Automated material handling system: Transportation devices ,Feeding and orientation devices (in-bowl tooling, feed tracks, escapements), Assembly systems , Machine vision system

Mapping of Course Outcomes and Program Outcomes:

Course Learning Outcomes	Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Lifelong Learning	Project Management and Finance
	P01	PO2	P03	P04	P05	P06	PO7	PO8	P09	PO10	PO11	P012
CO1 Students will be able apply principles industrial automation the solution of specific manufacturing challenges	of nto	✓	✓	✓	✓				√	√	✓	

CO2	They will be able to program and operate an industrial robot, setup and implement pneumatic circuits, setup and implement computer vision systems, material handling systems	✓	✓	√	✓	✓			✓	✓	
CO3	Integrate a number of these manufacturing technologies in an automated work cells	✓	✓	√	✓	✓				✓	

Teaching-learning and Assessment Strategy:

Teaching and learning activities	Engagement (hours)
Face-to-face learning	
Lecture	7
Practical/Tutorial/Studio	14
Student-centred learning	-
Self-directed learning	

Non face-to-face learning	10
Revision	5
Assessment preparations	7
Formal Assessment	
Continuous Assessment	3.5
Final Examination	1.5
Total	48

Teaching methodology:

Lecture and Discussion, Practical Sessions, Co-operative and Collaborative Method,

Lecture Schedule:

Week	Lecture	Topics	TEST
1	Lec 1	Industrial robotics	
2	Lec 2	Industrial robotics (contd.)	Q,P,Pr
3	Lec 3	Industrial sensors and switches	
4	Lec 4	PLC	
5	Lec 5	PLC (contd.)	O. D. Dr.
6	Lec 6	PLC (contd.)	Q, P, Pr
7	Lec 7	Assembly machines	
8	Lec 8	Industrial control	Q, ASG

9	Lec 9	Transportation devices	
10	Lec 10	Transportation devices (Contd.)	
11	Lec 11	Feeding and orientation devices	
12	Lec 12	Machine vision system	
13	Lec 13	Assembly systems	
14	Lec 14	Review	

Linkage of Course Outcomes with Assessment Methods and their Weights:

			СО	Bloom's Taxonomy
Compo	onents	Grading		
	Quiz 1-2	50%	CO 1	C1-C3, P1
Continuous Assessment			CO 2	C3-C5, P2
(40%)	Class Participatio	10%	CO 1	C1-C3, P1
	n	2070	CO 2	C3-C5, P2
Final	Quiz	40%	CO 2	C1-C3, P2
			CO 3	C3-C6, P4-P5
Total I	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

5. James A. Rehg, Introduction to Robotics in CIM Systems, 5th edition

Course Name: Modeling and Simulation

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-4, T-2

Curriculum Structure: Outcome-Based Education (OBE)

Pre-requisites: None

Synopsis/Rationale:

This Outcome-Based Education (OBE) based course is designed to introduce students to the modeling and simulation approach. It emphasizes feasible processes to conduct an in-depth study on the use of models as a basis for simulations to develop data utilized for managerial or technical decision making.

Objectives:

- 1. To explain feasible solutions to discrete event problems.
- 2. To expose students to various models and their feasibility.
- 3. To conduct a detailed study of simulation modeling, simulation experimentation, and analysis.
- 4. To introduce students to Monte Carlo simulation.
- 5. To conduct feasibility study on network system simulation.

Course Outcomes (CO) & Generic Skills:

At the end of the course the students will be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Prepare feasible solutions to discrete event problems.	C1-C3	1		2, 3	T, Mid Term,
CO2	Derive simulation modeling using the arena package.	C1, C4	2	2	2, 3	T, F
соз	Derive the most feasible layout of an existing production line.	C3, C4	3	5	2, 3	T, Mid Term Exam, F

CO4	Prepare multi-resolution and multi-aspect modeling.	C1- C3	3	2	2, 3	T, F		
(CP- C	(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test, PR – Project, Q –							
	Quiz, ASG – Assignment, Pr – Present	tation, R – Ro	eport, F	– Fina	l Exam)			

Course Contents:

Basic concepts of simulation (definitions and types of simulations), Mechanism of discrete event simulation, Random number generation, Input data analysis (input distribution modeling), Simulation modeling using Arena package, Review of probability and statistics, Simulation output analysis, Monte Carlo simulation, Verification and validation of simulation models, Other simulation approaches (Time driven simulations), Component-based simulation and modeling tools, Simulation protocol concepts, designs, and implementations, Simulation experimentation and analysis, Network system simulation modeling, Multiresolution, multi-aspect modeling, Parallel simulation modeling concepts, and methods.

Mapping of Course Outcomes and Program Outcomes:

Course Learning Outcomes		L Engineering Knowledge	Problem Analysis	Design / Development of Solutions	4 Investigation	Modern Tool Usage	5 The Engineer and Society	7 Environment and Sustainability	8 Ethics	• Communication		1 Project Management and Finance	2 Life Long Learning
		P01	P02	P03	P04	PO5	90d	P07	P08	P09	PO10	P011	P012
CO1	Prepare feasible solutions to discrete		√										
	event problems.												

CO3	Derive the most feasible layout of an existing production line.	✓		✓				✓	
CO4	Prepare multi-resolution and multi-aspect modeling.	<	✓					\	<

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centered Learning	-
Self-Directed Learning	
Non-face-to-face learning	20
Revision	19
Assessment Preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	106

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Assignments, Class Tests, Exams, Feedback at every step.

Lecture Schedule:

	200000000000000000000000000000000000000										
Week	Lecture	Topics	ASSESSMENT								
			!								

1 Input data analysis (input distribution modeling). 2 Input data analysis (input distribution modeling) (continued). 4 1 Simulation modeling using the Arena package. 2 Simulation modeling using the Arena package (continued). 5 1 Simulation modeling using the Arena package (continued). 2 Review of probability and statistics. 6 1 Simulation output analysis. 6 1 Simulation output analysis (continued). 7 1 Monte Carlo simulation. 7 Monte Carlo simulation (continued). 8 1 Monte Carlo simulation (continued). 9 Verification and validation of simulation models.				
2 1 Mechanism of discrete event simulation (continued). 2 Random number generation. 3 1 Input data analysis (input distribution modeling). 2 Input data analysis (input distribution modeling) (continued). 4 1 Simulation modeling using the Arena package. 2 Simulation modeling using the Arena package (continued). 5 1 Simulation modeling using the Arena package (continued). 2 Review of probability and statistics. 6 1 Simulation output analysis. 2 Simulation output analysis (continued). 7 1 Monte Carlo simulation. 2 Monte Carlo simulation (continued). 8 1 Monte Carlo simulation (continued). 9 1 Verification and validation of simulation models (continued). 7 Time driven simulations. CT 2 to be held on these topics, ASG, PR	1	1		
2 Random number generation. 3 1 Input data analysis (input distribution modeling). 2 Input data analysis (input distribution modeling). 4 1 Simulation modeling using the Arena package. 2 Simulation modeling using the Arena package (continued). 5 1 Simulation modeling using the Arena package (continued). 2 Review of probability and statistics. 6 1 Simulation output analysis. 2 Simulation output analysis (continued). 7 1 Monte Carlo simulation. 2 Monte Carlo simulation (continued). 8 1 Monte Carlo simulation (continued). 9 1 Verification and validation of simulation models (continued). 1 Time driven simulations. CT 1 to be held on these topics. CT 2 to be held on these topics, ASG, PR CT 3 to be held on these topics. CT 3 to be held on these topics.		2	Mechanism of discrete event simulation.	
TT 1 to be held on these topics Input data analysis (input distribution modeling). Input data analysis (input distribution modeling) (continued). Input data analysis (input distribution modeling) (continued). Simulation modeling using the Arena package (continued). Simulation modeling using the Arena package (continued). Review of probability and statistics. Review of probability and statistics. Review of probability and statistics. Simulation output analysis. Simulation output analysis (continued). Monte Carlo simulation. Monte Carlo simulation. Monte Carlo simulation (continued). Verification and validation of simulation models. Verification and validation of simulation models (continued). Time driven simulations.	2	1	Mechanism of discrete event simulation (continued).	
2		2	Random number generation.	CT 1 to be held on
Input data analysis (input distribution modeling) (continued). 4	3	1	Input data analysis (input distribution modeling).	these topics
2 Simulation modeling using the Arena package (continued). 5 1 Simulation modeling using the Arena package (continued). 2 Review of probability and statistics. 6 1 Simulation output analysis. 2 Simulation output analysis (continued). 7 1 Monte Carlo simulation. 2 Monte Carlo simulation (continued). 8 1 Monte Carlo simulation (continued). 9 1 Verification and validation of simulation models. 9 1 Verification and validation of simulation models 1 (continued). 2 Time driven simulations.		2		
(continued). Simulation modeling using the Arena package (continued). Review of probability and statistics. CT 2 to be held on these topics, ASG, PR	4	1	Simulation modeling using the Arena package.	
(continued). 2 Review of probability and statistics. CT 2 to be held on these topics, ASG, PR 2 Simulation output analysis (continued). 7 1 Monte Carlo simulation. 2 Monte Carlo simulation (continued). 8 1 Monte Carlo simulation (continued). 2 Verification and validation of simulation models. 9 1 Verification and validation of simulation models (continued). CT 2 to be held on these topics, ASG, PR CT 3 to be held on these topics		2		
CT 2 to be held on these topics, ASG, PR 2	5	1		
PR 2 Simulation output analysis (continued). 7 1 Monte Carlo simulation. 2 Monte Carlo simulation (continued). 8 1 Monte Carlo simulation (continued). 2 Verification and validation of simulation models. 9 1 Verification and validation of simulation models (continued). 2 Time driven simulations.		2	Review of probability and statistics.	CT 2 to be held on
2 Simulation output analysis (continued). 7 1 Monte Carlo simulation. 2 Monte Carlo simulation (continued). 8 1 Monte Carlo simulation (continued). 2 Verification and validation of simulation models. 9 1 Verification and validation of simulation models (continued). CT 3 to be held on these topics Time driven simulations.	6	1	Simulation output analysis.	these topics, ASG,
2 Monte Carlo simulation (continued). 8 1 Monte Carlo simulation (continued). 2 Verification and validation of simulation models. 9 1 Verification and validation of simulation models (continued). CT 3 to be held on these topics Time driven simulations.		2	Simulation output analysis (continued).	
8 1 Monte Carlo simulation (continued). 2 Verification and validation of simulation models. 9 1 Verification and validation of simulation models (continued). CT 3 to be held on these topics Time driven simulations.	7	1	Monte Carlo simulation.	
2 Verification and validation of simulation models. 9 1 Verification and validation of simulation models (continued). CT 3 to be held on these topics Time driven simulations.		2	Monte Carlo simulation (continued).	
9 1 Verification and validation of simulation models (continued). CT 3 to be held on these topics Time driven simulations.	8	1	Monte Carlo simulation (continued).	
(continued). these topics 2 Time driven simulations.		2	Verification and validation of simulation models.	
	9	1		CT 3 to be held on these topics
10 1 Time driven simulations (continued).		2	Time driven simulations.	
	10	1	Time driven simulations (continued).	

	2	Component-based simulation and modeling tools.	
11	1	Component-based simulation and modeling tools (continued).	
	2	Simulation protocol concepts, designs, and implementations.	
12	1	Simulation experimentation and analysis.	CT 4 to be held on
	2	Simulation experimentation and analysis (continued).	CT 4 to be held on these topics, ASG,
13	1	Network system simulation modeling, Multiresolution, multi-aspect modeling.	PR
	2	Network system simulation modeling, Multiresolution, multi-aspect modeling (continued).	
14	1	Parallel simulation modeling concepts and methods.	
	2	Parallel simulation modeling concepts and methods (continued) and Course Review.	

(PR – Project; ASG – Assignment)

Linkage of Course Outcomes with Assessment Methods and their Weights:

Comp	Components		СО	Bloom's Taxonomy	
			CO 1	C1-C3	
	Test 1-3	20%	CO 2	C1, C4	
Continuous			CO 3	C3, C4	
Assessment (40%)			CO 4	C1- C3	
	Class			CO 1	C3, C4
	Participation	5%	CO 6	A3	
	Class	5%	-	-	

	attendance			
	Midterm	10%	CO 1	C1 - C4
			CO 3	C3, C4
	Final Exam		CO 1	C1-C3
Final			CO 2 C1, C	
			CO 3	C3, C4
			CO 4	C1- C3
Total Marks		100%		

Text and Ref Books:

- 1. Theory of Modeling and Simulation, 3rd edition, Bernard P. Zeigler, Alexandre Muzy, Ernesto Kofman. Third Edition.
- 2. Principle of Modeling and Simulation, A multidisciplinary approach John A. Sokolowski, Catherine M. Banks.

Course Code: IPE 420 Course Name: Modeling and Simulation Sessional

Credit Hour: 1.50 Contact Hour: 3.00

Level/Term: L-4, T-1

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: Concurrent with IPE 419 Modeling and Simulation

Rationale:

The course is intended to develop the necessary skills in students to develop a simulation of a manufacturing or service organization.

Objective:

- 1. To make students familiar with the concepts and tools of industrial simulation
- 2. To develop the students' ability to model a complex manufacturing or service process.
- 3. To make students adept at coding simulation in MALAB
- 4. To make students proficient at developing complex industrial simulation at ARENA

Course Outcomes (CO) Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO 1	Explain the concept of simulation and develop and analyze a simulation model	C2-C6	1	2	1,3	R
CO 2	Explain the logic, structure, components and management of simulation modeling	C2	1	1	1	R
CO 3	Demonstrate knowledge of MATLAB and ARENA	СЗ	1	1	2	ASG,R
CO 4	Build a simple simulation model using MATLAB	C6	1	1,2	2	ASG, R
CO 5	Build a complex industrial simulation model using ARENA	C6	1,2	1,2,	2	PR,ASG, R
CO 6	Analyze the output data and demonstrate the various findings to management	C3, C4	2	3	1	ASG, R
CO 7	Do reverse calculation and determine the amount of input(s) to generate the required output	C2	2	1	1,2	ASG, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

Course Content:

Basic flow simulation, Random numbers, Modelling methodology, Modelling of complex systems, Different kinds of statistical distributions, Basic queue theory, Single server systems, Parallel server systems, Attributes, Batch/bulk arrival, Modelling of AGV and conveyor belts, Statistical analysis of the results from simulations

Mapping of Course Outcomes (CO) and Program Outcomes:

Cours	e Learning Outcomes												
		Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Life Long Learning	Project Management and Finance
		P01	P02	PO3	P04	P05	90d	P07	PO8	P09	PO10	P011	P012
CO1	Explain the concept of simulation and develop and analyze a simulation model	√											
CO2	Explain the logic, structure, components and management of simulation modeling	√				✓							
CO3	Demonstrate knowledge of MATLAB and ARENA	✓	✓	✓		✓							
CO4	Build a simple simulation model using MATLAB	✓	✓	✓		✓							
CO5	Build a complex industrial simulation model using ARENA	√	✓	✓		✓					✓		
CO6	Analyze the output data and demonstrate the various findings to management				✓	✓				✓			
CO7	Do reverse calculation and determine the amount of input(s) to generate the required output			✓	✓	✓							

Lecture schedule:

Week 1	Introduction	
Class 1	Introduction to MATLAB, Discrete Event Simulation	
Week 2	Fundamental Simulation Concepts	
Class 2	Simulating Service and Manufacturing Industry using MATLAB	
Week 3	Quiz 1	
Class 3	Quiz 1	
Week 4	Introduction to ARENA	
Class 4	A guided tour through ARENA simulation software	
Week 5	Modelling Advanced Operations	
Class 5	Modelling advanced operations using ARENA	
Week 6	ARENA Animation	
Class 6	Animating a simulation model using ARENA	
Week 7	Course Review and Quiz 2	
Class 7	A review of the entire course and final quiz	

Linkage of Course Outcomes with Assessment Methods and their Weights:

Assess	sment Strate	egies	СО	Dia ana's Taylon anay				
Compor	Components		CO	Bloom's Taxonomy				
			CO 1	C2-C6				
			CO 2	C2				
	XX7 11		CO 3	C3				
Continuous	Weekly Reports	20%	CO 4	C6				
Assessment	ient		CO 5	C6				
(70%)								CO 6
			CO 7	C2				
		40%	CO 1	C2-C6				
		4 0%	CO 2	C2				

	Class		CO 3	C3
	pa tion		CO 4	C6
			CO 7	C2
	Presentat	10%	CO 5	C6
			CO 5	C6
Final Report		30%	CO 6	C3, C4
			CO 7	C2
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

1. Kelton, W. David, Sadowski, Randall P., and Swets, Nancy B. (2010).- Simulation with Arena

Reference Site:

https://classroom.google.com/ (To be announced)

Course Code: IPE 422 **Course Name:** Machine Tools Sessional

Credit Hour: 1.50 Contact Hour: 3.00

Level/Term: L-4, T-1

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: Concurrent with IPE 421 Machine Tools

Synopsis/Rationale:

This Outcome Based Education (OBE) based course is designed to enhance practical knowledge of internal kinematic structures of machine tools.

Objectives:

To study basic components of an Engine Lathe and their working principles

To study the kinematic diagram of an Engine Lathe

To conduct a study on different parts and functions of a CNC Milling Machine

To study the operation and components of a Shaper Machine

To study the indexing and manufacturing of a spur and helical gear

To study basic components of a Grinding Lathe and their working principles

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO 1	Explain working principles of basic components of Engine Lathe	C2-C5	1	2	1	T,Q,R,F
CO 2	Draw and explain kinematic diagram of Engine Lathe	C4-C6	2	2	1	T,Q,R,F
CO 3	Develop G- code for CNC milling operation	C3-C5	1	1	2	T,Q,R,F
CO 4	Explain operations of Shaper Machine	C3	2	1,2	1	T,Q,R,F
CO 5	Set up different types of indexing in milling machine	C6, A3	1	1		T,Q,R,F
CO 6	Explain working principles of basic components of Grinding Lathe	C3	2	1,2	1	T,Q,R,F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; PR-Project; PR-Pro

Course Contents:

Name of the experiments:

- 1. (a) Study of Engine Lathes
- (b) Study the Kinematic Diagram of an Engine Lathe
- 2. Study of CNC Milling machine.
- 3. Study of Shaper Machine.
- 4. Study of Milling Machine and Dividing Head
- 5. Study and Operation of Surface Grinding Machine.

Mapping of Course Outcomes and Program Outcomes:

	Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and	Ethics	Communication	Individual and Team Work	Project Management and	Life Long Learning	
	P01	P02	P03	P04	PO5	P06	PO7	P08	P09	PO10	P011	PO12	
CO1	Explain working principles of basic components of Engine Lathe	V	1										
CO2	Draw and explain kinematic diagram of Engine Lathe	V	1										
CO3	Develop G- code for CNC milling operation	V	1	V									
CO4	Explain operations of Shaper Machine	V											
CO5	Set up different types of indexing in milling machine	1	1										
CO6	Explain working principles of basic components of Grinding Lathe	V											

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	16
Practical / Tutorial / Studio	16
Student-Centred Learning	10
Self-Directed Learning	
Non-face-to-face learning	40
Revision	10

Assignment Preparations	20
Formal Assessment	
Continuous Assessment	5
Final Examination	1
Total	118

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Exams, Feedback at every step.

Lecture Schedule:

Week 1	Introduction			
Class 1	Introduction to machine tools sessional			
Week 2	Engine Lathe			
Class 2	Study of Engine Lathes			
Week 3	Engine Lathe (contd.)			
Class 3	Study of Engine Lathes			
Week 4	Kinematic Diagram			
Class 4	Study the Kinematic Diagram of an Engine Lathe			
Week 5	Kinematic Diagram (contd.)			
Class 5	Study the Kinematic Diagram of an Engine Lathe			
Week 6	CNC Milling machine			
Class 6	Study of CNC Milling machine.			
Week 7	CNC Milling machine (contd.)			
Class 7	Study of CNC Milling machine.			
Week 8	Shaper Machine			
Class 8	Study of Shaper Machine.			
Week 9	Shaper Machine (contd.)			
Class 9	Study of Shaper Machine.			
Week 10	Milling Machine and Dividing Head			
Class 10	Study of Milling Machine and Dividing Head			
Week 11	Milling Machine and Dividing Head (contd.)			
Class 11	Study of Milling Machine and Dividing Head			
Week 12	Surface Grinding Machine			
Class 12	Study and Operation of Surface Grinding Machine.			
Week 13	Surface Grinding Machine (contd.)			
Class 13	Study and Operation of Surface Grinding Machine.			
Week 14	Final Exam			

O1 14	F' 10 '
Class 14	Final Quiz
Class I i	1 mai Vaiz

(PR – Project; ASG – Assignment; PR – Presentation; R - Report; F – Final Exam)

Linkage of Course Outcomes with Assessment Methods and their Weights:

Asses	sment Strate	egies	СО	Diam's Tayonamy
Components		Grading	CO	Bloom's Taxonomy
	Washin		CO 1	C2-C5
	Weekly Reports	20%	CO 2	C4-C6
	Reports		CO 4	C3
Continuous	Class		CO 2	C4-C6
Assessment (70%)	Participa tion Viva	10%	CO 3	C3-C5
			CO 1	C2-C5
		30%	CO 2	C4-C6
			CO 5	C6, A3
			CO 1	C2-C5
Final E	v. 0.122	40%	CO 2	C4-C6
Fillal E	XaIII	40%	CO 4	C3
			CO 5	C6, A3
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

- 1. Krar, S.F., (1998), Technology of Machine Tools, McGraw Hill Book Co.
- 2. Chernov, N., (1979), *Machine Tools*, Mir Publishers.
- 3. Kibbe, R.R., Neely, J.E., Meyer, R.O., et. al., (1999), *Machine Tool Practices*, Prentice Hall.
- 4. Boothroyd, G., & Knight W.A. *Fundamentals of Machining and Machine Tools*. 2nd Edition, Marcel Dekker Inc.

Reference Site:

https://classroom.google.com/ (To be announced)

Course Code: IPE 450 **Course Name:** Business Communication Seminar

Credit Hour: 0.75 Contact Hour: 1.5

Level/Term: Level 4/ Term II

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisite: None

Rationale:

The course is designed to develop in students interpersonal and communication skills required for their professional life.

Objectives:

- 1. To learn how to prepare and present business presentation and job interviews.
- 2. To learn how to prepare professional CV, resume, and cover letter.
- 2. To develop business writing skills while communicating via letters.
- 3. To create entrepreneurship skills by innovating business ideas.

Course Outcomes (CO) & Generic Skills:

	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Develop the verbal communication skills while presenting a business presentation, or appearing in debate competition and job interviews	C4-C5		2	1	Pr, R
CO2	Prepare business letters, curriculum vitae, resume and cover letters	C3-C6	2	2	1	ASG, R
CO3	Analyze and evaluate business proposals and create new endeavors of entrepreneurship	C2-C3	1	1	2	F, ASG
CO4	Prepare themselves for effective communication in any business-world setting	C3			3	Pr

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project;

 $Q-Quiz;\, ASG-Assignment;\, Pr-Presentation;\, R-Report;\, F-Final\; Exam)$

Course Contents:

Name of the sessions:

- 1. Preparing CV, resume, and cover letter.
- 2. Preparing business letters.
- 3. How to present a business presentation.
- 4. How to prepare for job interview.
- 5. Preparing business proposals.

Teaching-learning and Assessment Strategy:

Teaching and learning activities	Engagement (hours)

Face-to-face learning	
Lecture	-
Practical/ Tutorial/ Studio	28
Student-centred learning	-
Self-directed learning	
Non face-to-face learning	9
Revision	14
Assessment preparations	18
Formal Assessment	
Continuous Assessment	1.5
Final Examination	1.5
Total	72

Teaching methodology:

Lecture and Discussion, Formal Presentation, Formal Interview, Co-operative and Collaborative Method, Problem Based Method

Mapping of Course Outcomes and Program Outcomes:

No.	Course Outcomes (CO) of the]	Prog	gran	n O	utco	me			
110.	Course	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Develop the verbal communication skills while presenting a business presentation, or appearing in debate competition and job interviews (PO : 1, 2, 4, 5)	\checkmark	√		√	V							
CO2	Prepare business letters, curriculum vitae, resume and cover letters (PO: 1, 2, 5)	√	V			V							
CO3	Analyze and evaluate business proposals and create new endeavors of entrepreneurship (PO: 3, 5)			V		V							
CO4	Prepare themselves for effective communication in anybusiness-world setting (PO: 1, 4, 5)	V			1	1							

Lecture Schedule:

Week	Topics
1	Preparing CV, resume, and cover letter.
3	Preparing business letters.
5	How to prepare for job interview.
7	Mock Interview
9	How to present a business presentation.
11	Preparing business proposals.
13	Final Interview

Linkage of Course Outcomes with Assessment Methods and their Weights:

A	Assessment Strategies		СО	Bloom's Taxonomy
C	omponents	Grading	CO	Biooni s Taxonomy
Continuous	Assignment	20%	CO 1-2	C 3, C 4, P 1, P 2
Assessment	Class Participation	5%	CO 2-3	C 1, A 2, P 2
(40%)	Mock Presentation & Interview	15%	CO 3-4	C 6, A 3, P 4, P 5
Final Presentation and Interview		60%	CO 3-4	C 6, A 3, P 4, P 5
Т	otal Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

- 1. Essentials of Business Communication Mary Ellen Guffey
- 2. Excellence in Business Communication Courtland L Bovee
- 3. Business Presentations Anne Freitag-Lawrence

Reference Site:

https://classroom.google.com/ (To be announced)

1.2 Detailed Curriculum of IPE Optional Courses

Course Code: IPE 417 **Course Name:** Industrial Automation

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-4, T-2

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: IPE 411 (CAD/CAM)

Synopsis/Rationale:

Provides the students with basic knowledge of industrial automation systems designs, installation, modifications, maintenance, and repair.

Objectives:

- 1. To provide the student with basic skills useful in identifying the concepts of automated machines and equipment and describe the terms and phrases associated with industrial automation.
- 2. To introduce preventative maintenance, identify or solve problems in machines, and other technologies.
- 3. To demonstrate competence in maintaining and troubleshooting technology includes identifying, understanding, and performing routine preventative maintenance and service on technology.
- 4. To introduce different motion control systems using various types of sensors, encoders, and methods of integration by using PLCs.
- 5. To expose students to data acquisition and control system.

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods	
CO1	Explain the general function of industrial automation and identify safety in industrial automation.	C1,C2	1	1	1	T, Mid Term Exam, F	
CO2	Identify practical programmable logic controller applications as well as recognize fundamentals of programming.	C1,C2	3	1	3,5	ASG, Mid Term Exam, F	

CO3	Use arithmetic and advanced instructions in industrial automation including common arithmetic instructions, add, subtract, multiply, divide, and compare function, logical, operators, average, standard deviation, trigonometric, numbering system conversion sequencers and shift register prepare part program using programming languages such as APT.	C3	3	3	6	ASG, Mid Term Exam, F
CO4	Explain fundamentals of process control including process and control, proportional, integral, derivative (PID) control and tuning.	C1	1	1	1,2	T, ASG, R, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; Pr-Presentation; R-Report; $F-Final\ Exam$)

Course Contents:

Robot: Robot anatomy, Drive systems of robots, Electrical and hydraulic systems, AC and DC drives, Servo drives using voltage control, current control and direct torque control, PID control systems and performance issues. Feedback systems, Single loop and multi-loop, DSP based motion control systems, Sensors for industrial robots, encoders, resolvers, hall-effect sensors, acoustic sensors, ultrasonic and optical/infrared sensors, Elements of robot vision, Integration using PLCs, digital motion planning systems

Computer Control Machines: Introduction, classification, design features and control features of CNC machines; Programming: G and M Code programming, Offline (APT-like) programming; free form surface machining: Isoparametric, Isoplanar and Isoscallop machining strategies.

Mapping of Course Outcomes and Program Outcomes:

					Pro	gran	n Ou	tcom	es (P	O)			
No.	Course Outcomes (CO) of the Course	Engineering Knowledge	[™] Problem Analysis	Design / Development of	4 Investigation	Wodern Tool Usage	O The Engineer and Society	L Environment and Sustainability	∞ Ethics	6 Communication	☐ Individual and Team Work	☐ Project Management and Finance	디rife Long Learning

CO1	Explain the general function of industrial automation and identify safety in industrial automation.	V	√	V	V				
CO2	Identify practical programmable logic controller applications as well as recognize fundamentals of programming.	V	V	V					
CO3	Use arithmetic and advanced instructions in industrial automation including common arithmetic instructions, add, subtract, multiply, divide, and compare function, logical, operators, average, standard deviation, trigonometric, numbering system conversion sequencers and shift register prepare part program using programming languages such as APT.	\checkmark		√				√	
CO4	Explain fundamentals of process control including process and control, proportional, integral, derivative (PID) control and tuning.	√		V					

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-

Self-Directed Learning	
Non-face-to-face learning	40
Revision	20
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	127

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Visualization using Computer Simulations, Assignments, Class Tests, Exams, Feedback at every step.

Lecture Schedule:

Week	Lecture	Topics	ASSESSMENT
1	Lec 1	Introduction	
	Lec 2	Automation system utilized in manufacturing	
	Lec 3	industries	
		Basic control systems: in pressure, flow, level,	
		temperature etc	Class Test 1, ASG,
2	Lec 4	Pumps, valves, indicators,	F
	Lec 5	Switches, recorders. transmitters	
	Lec 6	Signal conditioners, drives etc.	
3	Lec 7	Drive systems of robots: AC and DC drives,	
	Lec 8		

	Lec 9	Typical electronic controls used to position	
		pneumatic found in many mechanical	
		processes, actuators, servo valves etc.	
		Typical electronic controls used to hydraulic	
		cylinders found in many mechanical processes, actuators, servo valves etc.	
4	Lec 10	Introduction to system sensors	
_	Lec 10	Use of sensor in automation image and vision	
	Lec 12	processing	
		Web-based manufacturing monitoring system	
5	Lec 13	Sensors for industrial robots, encoders	
	Lec 14	Resolvers, hall-effect sensors	
	Lec 15	Acoustic sensors, ultrasonic and	
		optical/infrared sensors,	Class Test 2, ASG,
6	Lec 16	Basic principles of operation and programming	PR, F
	Lec 17	of PLC/PID	, -
	Lec 18	Computer-based PLC simulation and real plcs	
		for programming practice	
		PLC programming and control knowledge in	
7	I as 10	typical industrial operation	-
/	Lec 19 Lec 20	Integration using PLCs Digital motion planning systems	
	Lec 20 Lec 21	Review Class 1	
8	Lec 21	Introduction to Data acquisition	
0	Lec 23	Control system	
	Lec 24	Multiple Human Machine Interface	
9	Lec 25	Computer software programs	-
	Lec 26	Computer software programs and today's	
	Lec 27	industry	Mid Towns E
		Modern Uses of Software	Mid Term, F
10	Lec 31	PC hardware interfacing	
	Lec 32	PC communications	
	Lec 33	data acquisition	
11	Lec 28	Data acquisition (Cntd)	
	Lec 29	Data acquisition and display	
10	Lec 30		-
12	Lec 34	Introduction to Supervisory Control and Data	
	Lec 35 Lec 36	Acquisition (SCADA)	
	Lec 30	Supervisory Control and Data Acquisition	Class Test 3, ASG,
13	Lec 37	(SCADA)Techniques Introduction to Distributed Control System	R, PR, F
15	Lec 37 Lec 38	(DCS)	
	Lec 39	Control System (DCS) and data highways	
14	Lec 40	Presentation	-
	Lec 40	Review Class 2	
	Lec 42		
<u> </u>		1	1

 $(PR-Project\ ;\ ASG-Assignment;\ PR-Presentation;\ R-Report;\ F-Final\ Exam)$

Linkage of Course Outcomes with Assessment Methods and their Weights:

Asses	sment Strate	egies		
Components	Components		СО	Bloom's Taxonomy
			CO 1	C1,C2
	Test 1-3	20%	CO 3	C3
			CO 4	C1
Continuous	Class Participa tion		CO 2	C1,C2
Assessment (40%)		5%	CO 1	C1,C2
	Mid		CO 1	C1,C2
		15%	CO 2	C1,C2
	term		CO 3	C3
			CO 1	C1,C2
Final Exam		60%	CO 2	C1,C2
Filiai Exaili		00%	CO 3	C3
			CO 4	C1
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

1. Industrial Control Electronics Devices, Systems, & Applications - Terry Bartlet

2. Industrial Automation: Hands On - Frank Lamb

Reference Site:

https://classroom.google.com/ (To be announced)

Course Code: IPE 423 Course Name: Robotics Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-4, T-1

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: (1) CSE 281: Computer Programming Techniques

(2) IPE 271: Engineering Mechanics and Theory of Machines(3) CSE 282: Computer Programming Techniques Sessional

(4) IPE 243: Mechanics of Solids

(5) IPE 301: Measurement, Instrumentation and Control

(6) IPE 302: Measurement, Instrumentation and Control Sessional

Synopsis/Rationale:

This Outcome Based Education (OBE) based course, is designed to introduce the concepts of Robotic system, its components and instrumentation and control related to robotics and to prepare the students to be able to recognize the suitability and implications of applying the robotics technology to specific industrial applications. This curricular unit aims to provide the students with the necessary tools so they can be able to understand, characterize, specify and use of robotic manipulators, as well as to program and operate industrial robotic manipulators.

Objectives:

- 1. To develop the student's knowledge in various robot structures and their workspace
- 2. To develop student's skills in performing spatial transformations associated with rigid body motions
- 3. To develop student's skills in perform kinematics analysis of robot systems
- 4. To provide the student with knowledge of the singularity issues associated with the operation of robotic systems
- 5. To provide the student with some knowledge and analysis skills associated with trajectory planning
- 6. To provide the student with some knowledge and skills associated with robot control

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO 1	Define and describe the fundamentals of robotics and its components, kinematics and dynamics of robotics and explain the need and implementation of related instrumentation & control in robotics.		1		1	T, Mid Term Exam, F
CO 2	Discuss, model and solve the math and computational methods related to kinematic problems involving robot manipulators and mobile robots.	C2-C6	1		1,2	T, ASG, F
CO 3	Appraise the computational challenges inherent in fundamental mobile robotic tasks (e.g. localization, mapping, motion planning).	C2-C5	1		2,3	T, F

CO 4	Use robot inputs and outputs to control operation sequence and create, modify, and execute different robot programs.	C3,C4	1		1,3	T, Mid Term Exam, ASG, F
CO 5	Develop simple robot control systems integrating perception, planning, and action.	C6	1,3	1,2	3	ASG, Pr, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; PR-Project; PR-Pro

Course Contents:

Basic Concepts in Robotics: Automation and robotics, Robot anatomy, Basic structure of robots Resolution, Accuracy and repeatability, and Classification and Structure of robots, Point to point and continuous path systems.

Robotic System and Control Systems: Components of robotic system, Hydraulic systems, DC servo motors, Basic control systems concepts and models, Control system analysis, Robot activation and feedback components, Positional and velocity sensors, actuators. Power transmission systems

Robot arm Kinematics and Dynamics: Robot joints, The direct kinematics problem, The inverse kinematics solution, Lagrange-Euler formation, Generalized D'Alembert equations of motion, Denavit-Hartenberg convention and its applications

Sensors and Instrumentation in robotics: Tactile sensors, proximity and range sensors, Force and torque sensors, Uses of sensors in robotics, Vision equipment, Image processing, Concept of low level and high level vision

Robot control: Decoupling of nonlinear systems, feed forward and feedback control, control models and strategies, position control and simple feedback synthesis, adaptive control and force control

Computer based Robotics: Method of robots programming, GUI based robotic arm control, Introduction to Artificial Intelligence, Interfacing with computer, communication and data processing

Mobile robots kinematics: Path planning and control, Research in robotics, Future of robotics

Mapping of Course Outcomes and Program Outcomes:

Cou	rse Learning Outcomes	Engineering	Knowledge	Problem Analysis	Design / Development	of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and	Ethics	Communication	Individual and Team	Work	Project Management	and Finance	Life Long Learning
		PO	T	PO 2	P0	\mathfrak{S}	PO 4	PO 5	PO 9	PO 7	P0	P0	PO	10	PO	11	PO 12
CO1	Define and describe the fundamentals of robotics and its components, kinematics and dynamics of robotics and explain the need and implementation of related instrumentation & control in robotics. Discuss, model and																
	solve the math and computational methods related to kinematic problems involving robot manipulators and mobile robots.	1	J	V													
	Appraise the computational challenges inherent in fundamental mobile robotic tasks (e.g. localization, mapping, motion planning).	1	V				V										
CO4	Use robot inputs and outputs to control operation sequence and create, modify, and	1	J			V											

execute different robot programs.								
Develop simple robot control systems integrating perception, planning, and action.	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$				$\sqrt{}$	

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	40
Revision	20
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	127

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Visualization using Computer Simulations, Assignments, Class Tests, Exams, Feedback at every step.

Lecture Schedule:

Week	Lecture	Topics	ASSESSMENT
1 Lec 1		Basic Concepts in Robotics: Automation and	
	Lec 2	robotics, Robot anatomy, Basic structure of	
	Lec 3	robots	
2	Lec 4	Resolution, Accuracy and repeatability, and	Class Test 1
	Lec 5	Classification and Structure of robots, Point to	
	Lec 6	point and continuous path systems.	

3	Lec 7	Robotic System and Control Systems:	
	Lec 8	Components of robotic system, Hydraulic	
	Lec 9	systems, DC servo motors	
4	Lec 10	Basic control systems concepts and models	
	Lec 11	Control system analysis, Robot activation and	
	Lec 12	feedback components	
5	Lec 13	Positional and velocity sensors, actuators.	
	Lec 14	Power transmission systems	
	Lec 15	, and the second	
6	Lec 16	Robot arm Kinematics and Dynamics: Robot	Class Test 2
	Lec 17	joints, The direct kinematics problem, The	
	Lec 18	inverse kinematics solution	
7	Lec 19	Lagrange-Euler formation, Generalized	
	Lec 20	D'Alembert equations of motion, Denavit-	
	Lec 21	Hartenberg convention and its applications.	
8	Lec 22	Sensors and Instrumentation in robotics: Tactile	
	Lec 23	sensors, proximity and range sensors, Force and	
	Lec 24	torque sensors, Uses of sensors in robotics.	
9	Lec 25	Vision equipment, Image processing, Concept	
	Lec 26	of low level and high level vision.	
	Lec 27		
10	Lec 31	Robot control: decoupling of nonlinear	Mid Term Exam
_,	Lec 32	systems, feed forward and feedback control,	
	Lec 33	control models and strategies, position control	
		and simple feedback synthesis, adaptive control	
		and force control.	
11	Lec 28	Computer based Robotics: Method of robots	
	Lec 29	programming	
	Lec 30	-	
12	Lec 34	GUI based robotic arm control,	
	Lec 35	Introduction to Artificial Intelligence	
	Lec 36	_	Class Test 3, ASG,
13	Lec 37	Interfacing with computer,	R, F
	Lec 38	communication and data processing	
	Lec 39		
14	Lec 40	Mobile robots kinematics, path planning and	
	Lec 41	control, Research in robotics, Future of robotics	
	Lec 42	Review for Final Exam	
(DD D :	Lec 42		

(PR – Project; ASG – Assignment; PR – Presentation; R - Report; F – Final Exam)

Linkage of Course Outcomes with Assessment Methods and their Weights:

Asses	sment Strate	egies	СО	Dloom's Toyonomy
Components		Grading	CO	Bloom's Taxonomy
			CO 1	C1,C2
Continuous Assessment	Test 1-3	20%	CO 2	C2-C6
			CO 3	C2-C5
	Class Participa	5%	CO 2	C2-C6
(40%)	tion	570	CO4	C3,C4
	Mid	15%	CO 1	C1,C2
	term	13%	CO 4	C3,C4
			CO 1	C1,C2
Einel Even		60%	CO 2	C2-C6
Final Exam		00%	CO 3	C2-C5
			CO 4	C3,C4
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

- 2 CAD/CAM principles of application P.N. Rao
- 3 Robot Manipulators, Mathematics, Programming and Control Richard Paul
- 4 Introduction to Robotics John J. Craig

Reference Site:

https://classroom.google.com/ (To be announced)

Course Code: IPE 425 Course Name: Marketing Management

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-4, T-2

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: (1) IPE 107: Engineering Economy

Synopsis/Rationale:

This Outcome Based Education (OBE) based course, which introduces students to concepts of marketing. This course focuses on various marketing strategies, including segmentation, targeting, positioning, and marketing mix (product, price, place and promotion) strategies and to

explore how those strategies contribute to the company's competitive advantage in the marketplace.

Objectives:

- **4.2** The overall objective of the course is to provide students with the basic understanding of marketing concepts and theories
- **4.3** To give students the basic knowledge of the marketing discipline.
- **4.4** To cover the major topics of classical marketing.

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO 1	Outline the key marketing concepts and fields of their application	C1-C4			1	T, Mid Term Exam, F
CO 2	Develop marketing mix for different markets (b2b, b2c, services)	C3, C4	1	1	1	ASG, Mid Term Exam, F
CO 3	Apply marketing theories and approaches during class discussions and work on group projects	C2-C4	2	2	2	ASG, Mid Term Exam, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; PR-Project; PR-Pro

Course Contents:

The role and understanding of marketing: Course introduction, Defining marketing, What is marketing/marketing process, Marketing principles

Different types of markets (consumer markets – b2c, industrial markets – b2b, service markets) **Market analysis**: The marketing environment and markets, B2C markets and consumer buying behavior, B2B markets and services, Marketing research and marketing information systems, Strategic marketing, Segmentation, Targeting and Positioning (STP),

Operational marketing: Marketing Mix, The product mix, The price mix, The distribution mix, The communication mix, The Marketing mix principle, Products, services and branding decisions, Price decisions, Channel management and retailing

Marketing communications: tools and techniques. Managing marketing communications

Marketing organization and controlling: Marketing implementation and control, Marketing

Metrics

Marketing management in Emerging markets: The impact of Emerging markets on marketing development, Contemporary marketing practices. Principles of relational marketing

Mapping of Course Outcomes and Program Outcomes:

No.	Course Outcomes (CO) of the	Program Outcomes (PO)											
NO.	Course	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Outline the key marketing concepts and fields of their application	1				V						V	√
CO2	Develop marketing mix for different markets (b2b, b2c, services)		1						√	√	√	√	V
CO3	Apply marketing theories and approaches during class discussions and work on group projects		V		V					√		√	V

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	18
Revision	21
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	106

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Assignments, Class Tests, Exams, Feedback at every step.

Lecture Schedule:

Week	Week Lecture Topics		TEST
1	Lec 1	The role and understanding of marketing:	
		Course introduction.	
	Lec 2	Presentation of main course topics.	1
		Explanation of learning outcomes	
	Lec 3	Defining marketing. What is marketing /	
		marketing process?	
2	Lec 4	Marketing principles	
	Lec 5	Different types of markets	ACC Class Tost 1
	Lec 6	Market analysis	ASG, Class Test 1
3	Lec 7	The marketing environment and markets	
	Lec 8	B2c markets and consumer buying behavior	
	Lec 9	B2B markets and services	
4	Lec 10	Marketing research and marketing information	
		systems	
	Lec 11	Strategic marketing	
	Lec 12	Segmentation, Targeting and Positioning	
_		(STP)	_
5	Lec 13	Marketing strategy	_
	Lec 14	Marketing strategy (Contd.)	ASG, Class Test 2
	Lec 15	Marketing strategy (Contd.)	
6	Lec 16	Segmentation	
	Lec 17	Targeting and Positioning (STP)	
	Lec 18	Operational marketing	
7	Lec 19	Marketing Mix	1
	Lec 20	Marketing Mix (Contd.)]
	Lec 21	Marketing Mix (Contd.)]
8	Lec 22	The product mix	
	Lec 23	The product mix (Contd.)	1

	Lec 24	The product mix (Contd.)				
9	Lec 25	The price mix	Mid Term			
	Lec 26	The price mix	who term			
	Lec 27	The distribution mix				
10	Lec 28	The communication mix				
	Lec 29	The communication mix				
	Lec 30	The Marketing mix principle				
11	Lec 31	The Marketing mix principle				
	Lec 32	The Marketing mix principle				
	Lec 33	Products, services and branding decisions				
12	Lec 34	Price decisions	ASG, Class Test 3			
	Lec 35	Channel management and retailing				
	Lec 36	Marketing communications				
13	Lec 37	Managing marketing communications				
	Lec 38	Marketing implementation and control				
	Lec 39	Marketing implementation and control,				
		Marketing Metrics	ASC E			
14	Lec 40	The impact of Emerging markets on marketing	ASG,F			
		development				
	Lec 41	Contemporary marketing practices				
	Lec 42	Principles of relational marketing				

(PR – Project; ASG – Assignment; PR – Presentation; R - Report; F – Final Exam)

Linkage of Course Outcomes with Assessment Methods and their Weights:

			CO	Bloom's Taxonomy
Comp	onents	Grading		
Continuou	Class test 1-		CO 1	C1-C3
s	3	20%	CO 2	C4, P4
Assessmen t (40%)			CO 3	P4,C1,C4
		5%	CO 1	C1-C3, A2

	Class Participatio n		CO 2	C4, P4
	Mid term	15%	CO 1	C1-C3
			CO 2	C4, P4
			CO 1	C1-C3
Final	Exam	60%	CO 2	C4, P4
			CO 3	P4, C1, C4
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

- i. Marshall & Johnston, Marketing Management, McGraw Hill
- ii. Kotler & Keller, 14th ed., Marketing Management, Prentice Hall
- iii. Chernev & Kotler, 5th ed., Strategic Marketing Management, Brightstar Media

Reference Site:

https://classroom.google.com/ (To be announced)

Course Code: IPE 427
Credit Hour: 3.00
Course Curriculum:

Course Title: Control Engineering
Contact Hour: 3.00 (Lecture)
Outcome Based Education (OBE)

Pre-requisites: (1) IPE 301: Measurement, Instrumentation and Control

(2) MATH-201: Differential Equations and Laplace Transform

(3) CSE 281: Computer Programming Techniques(4) EECE 171: Basic Electrical and Electronic Circuit

(5) IPE 271: Engineering Mechanics and Theory of Machines

Synopsis/Rationale

This course follows the Outcome Based Education (OBE) approach and introduces students to the concept of dynamic systems modeling and control systems design. Mathematical

representations of control systems by different equations and Laplace transformations, block diagrams and transfer functions are emphasized as well as visualization using MATLAB programming. Salient aspects of control systems such system input and response (time and frequency domain), control action, system types, Lead-Lag compensators etc. are analyzed analytically. Analogues of control systems (mechanical, fluids, thermal and electrical) as well as orientation with electro-hydro-pneumatic and electromechanical controls help students understand the scope of the subject and its real world applications. Concurrent with the theory, some physical demonstrations and computer simulations in MATLAB aid in cementing students' grasp of the subject matter. Finally, digital and robust control systems are introduced which are the current approaches to control and automation in the industry.

Objectives:

- i. To understand the application of physical laws and differential equations in order to create mathematical models of dynamic systems
- ii. To apply concepts of transfer function and Laplace transforms in order to analyze system response
- iii. To analyze control system stability and to evaluate robustness of comparable systems under standard inputs
- iv. To apply PLC and PID based control protocols to design simulated control systems of real world applications
- v. To evaluate the performance of digital and robust systems using time and frequency domain outputs and simulation in MATLAB

Course Outcomes (CO):

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxono my	СР	CA	KP	Assessmen t Methods
CO 1	Explain the basics of mathematical modeling of systems, apply relevant physical and engineering principles and develop suitable models. (PO: 1, 2, 3, 9)	C2-C6	1,2	2	1	Group ASG, Mid- Term Exam, F
CO 2	Outline the fundamental tenets of linearization and Laplace transformation, apply transformations and complex frequency 's' variables to analyze and visualize responses of dynamic systems to standard inputs: impulse, step, ramp and parabolic. (PO: 1, 2, 5, 9)	C2-C4	1	1, 2	1	ASG, T, Mid Term Exam

CO 3	Apply the analytical tools and MATLAB simulation to analyze stability of control systems and use it to evaluate the performance of various such systems in order to decide the best controller for a particular problem. (PO: 1, 2, 5, 9, 10)	C3-C5, P3	2	1	2	ASG, Mid Term Exam, F
CO 4	Explain the basics of PID and PLC control algorithms, analyze requirements, apply software/analytical approach to design control systems for real world problems. (PO: 1-5, 9, 12)	C2-C4, P3, P4	1	2	1	T, ASG, PR, F
CO 5	Interpret the use of time and frequency domain plots of control systems, analyze the outputs of MATLAB based control simulations, evaluate the stability and robustness of concerned control systems. (PO: 1, 2, 5)	C2-C5, P3, P4	1	1, 2	1	ASG, PR, R, T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

Course Contents:

- i. **Control Systems:** Open and closed loop control systems; Feedback and feed-forward control architectures, their basics and performance evaluation, limitations, robustness and stability; Fundamentals of modeling dynamic systems using the laws of physics and differential equations, linear approximation using Taylor series.
- ii. **Block Diagrams:** Fundamentals of block diagram representations of control systems, their simplifications and applications in designing control system architecture; Signal Flow graph models; Simulation of control systems using MATLAB.
- iii. **Mass-Spring-Damper Systems:** Analogies of single and multi-body systems, natural and forced responses, damping ratios, resonant peaks and band widths; Applications in real world including active vehicle suspension system control with demonstration, and simulation via MATLAB.
- iv. **RLC Circuit based Control**: Concept, mathematical models and control applications of RLC circuits including Operational Amplifiers, Demonstration, MATLAB simulation.
- v. **State Variable Approach:** State variables of a dynamic system, state differential equation, system response using state transition matrix, simulation of state variable models of control systems using MATLAB.
- vi. **Inputs and Responses of Control Systems:** Standard inputs (unit impulse, rectangular, step, ramp, parabolic etc.); Responses of dynamic systems (natural, forced, transient, steady-state etc.); Percentage overshoot, Lead-Lag.
- vii. **Stability Analysis:** Basic concept for linear systems using the Routh array test, marginal stability, control design constraints, applications in feedback systems.

- viii. **Evans Root Locus techniques:** Mathematical basis and application in control design for real world systems.
- ix. **Gain and Phase margins:** Basic concept, polar plots, computation from Bode diagrams and Nyquist plots, implications in terms of robust stability of control systems.
- x. Actuator Control: Pneumatic, hydro-pneumatic, electro-hydro-pneumatic actutators, study of pneumatic circuits with physical demonstration, electro-hydro-pneumatic control system demonstration and mathematical modeling for 4 post car lift, simulation using MATLAB; D.C. and servo motors control methods and mathematical models, their analysis using block diagrams and transfer functions.
- xi. **Design of Feedback Control Systems:** Phase Lead and Lag-Design using Bode diagrams and root locus; Lead-Lag compensators based on frequency data for open-loop linear systems; PLC based control fundamentals, physical demonstration using trainer and MATLAB simulation; PID controller basics, algorithms for control including ladder diagrams, designing PID controllers based on empirical tuning rules, physical demonstration and modeling of water level control in water reservoir and temperature control in heating set-ups.

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	30
Computer Lab based simulation tutorials	10
Physical demonstrations of mechanical, thermal, fluid and electrical dynamic systems and their control	5
Student-Centred Learning (MIT's Open Courseware study, online blogs and class open discussion (life long learning)	5
Self-Directed Learning	
Non-face-to-face learning	40
Revision	10
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	2.5
Final Examination	3
Total	125.5

Linkage of Course Outcomes with Assessment Methods and their Weights:

Ass	essment Strate	egies	СО	Blooms Taxonomy
Comp	onents	Grading		Dioonis Tuxonomy
			CO 2	C2-C4
	Test 1-3	20%	CO 4	C2-C4, P3, P4
			CO 5	C2-C5, P3, P4
Continuo us	Class Participati	5%	CO 2	C2-C4
Assessme nt (40%)	on	370	CO 4	C2-C4, P3, P4
	Mid term		CO 1	C2-C6
		15%	CO 2	C2-C4
			CO 3	C3-C5, P3
			CO 1	C2-C6
Final	Exam	60%	CO 3	C3-C5, P3
1 11141	2/14/11		CO 4	C2-C4, P3, P4
			CO 5	C2-C5, P3, P4
Total	Total Marks			•

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Mapping of Course Outcomes and Program Outcomes:

No.	Course Outcomes (CO) of the Course	Program Outcome											
		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Explain the basics of mathematical modeling of systems, apply relevant	1	√	$\sqrt{}$						\checkmark			

	physical and engineering principles and develop suitable models. (PO: 1, 2, 3, 9)									
CO2	Outline the fundamental tenets of linearization and Laplace transformation, apply transformations and complex frequency 's' variables to analyze and visualize responses of dynamic systems to standard inputs: impulse, step, ramp and parabolic. (PO: 1, 2, 5, 9)	√	√			V		V		
CO3	Apply the analytical tools and MATLAB simulation to analyze stability of control systems and use it to evaluate the performance of various such systems in order to decide the best controller for a particular problem. (PO: 1, 2, 5, 9, 10)	√	V			V		V	V	
CO4	Explain the basics of PID and PLC control algorithms, analyze requirements, apply software/analytical approach to design control systems for real world problems. (PO: 1-5, 9, 12)	V	V	V	√	V		√		√
CO5	Interpret the use of time and frequency domain plots of control systems, analyze the outputs of MATLAB based control simulations, evaluate the stability and robustness of concerned control systems. (PO: 1, 2, 5)	V	V			V				

Lecture Schedule:

Week	Lecture	Topics	ASSESSMENT
1	Lec 1 Lec 2 Lec 3	Dynamic systems introduction and their modeling using ODEs	
2	Lec 4 Lec 5	Control systems introduction and types: feedback and feed forward, open and closed	Class Test 1, ASG

	Lec 6	loop control; their importance, demonstration using automobile ECU.		
3	Lec 7	Mass-spring-damper systems for single and		
	Lec 8	multi-body, ODEs, Laplace transforms, demonstration via vehicle active suspension,		
	Lec 9	visualization using MATLAB		
4	Lec 10	Resistor, Inductor and Capacitor (RLC) circuit		
	Lec 11	basics, analogy with mechanical systems, RLC control, visualization using MATLAB		
	Lec 12	control, visualization using Williams		
5	Lec 13	State Variable Approach to control		
	Lec 14	engineering, state differential equation, system response using state transition matrix,		
	Lec 15	simulation in MATLAB		
6	Lec 16	Inputs of Control Systems: Standard inputs	Class Test 2, ASG,	
	Lec 17	(unit impulse, rectangular, step, ramp, parabolic etc.); Responses of dynamic systems	PR	
	Lec 18	(natural, forced, transient, steady-state etc.); Lead-Lag.		
7	Lec 19	Stability Analysis of linear systems, concept of		
	Lec 20	marginal stability, control design constraints, applications in feedback systems;		
	Lec 21	Review for Mid-term Exam		
8	Lec 22	Root Locus: Mathematical basis, plots and		
	Lec 23	application in control system design		
	Lec 24			
9	Lec 25	Gain and Phase margins: Basic concept, polar		
	Lec 26	plots, Bode diagrams and Nyquist plots, robust stability of control systems, MATLAB		
	Lec 27	simulations		
10	Lec 31	Actuator Control for pneumatic, hydro-	Mid Term	
	Lec 32	pneumatic, electro-hydro-pneumatic actutators, demonstrations using pneumatic		
	Lec 33	circuits and 4 post car lift, simulations in MATLAB; D.C. and servo motors control, block diagrams and transfer functions methods		

11	Lec 28 Lec 29 Lec 30	Design of Feedback Control Systems for Phase Lead and Lag-Design using Bode diagrams and root locus; Lead-Lag compensators, MATLAB visualization				
12	Lec 34 Lec 35 Lec 36	PLC based control systems, physical demonstration using PLC trainer, and MATLAB simulation.	Class Test 3, ASG,			
13	Lec 37 Lec 38 Lec 39	PID controller basics, ladder diagrams, PID design using empirical tuning rules, physical demonstration using water level control in water reservoir and temperature control in heating set-ups, MATLAB visualization	R, PR, Pr, F			
14	Lec 40 Lec 41 Lec 42	Control system design and evaluation using MATLAB; Review for Final Exam				

(PR – Project; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Visualization using Computer Simulations in MATLAB, Physical demonstrations of systems in laboratory, Open discussion & blogs, Assignments, Class Tests, Exams, Feedback at every step.

Text and Ref Books:

- a) Modern Control Systems, 12th Edition, by Dorf and Bishop (Text Book)
- b) Control System Engineering, 6th Edition, by Norman Nise (Reference Book & Further Reading)
- c) Introduction to Automatic Controls, 2nd Edition, by Howard L. Harrison and John G. Bollinger (Reference)

Course Code: IPE 431 **Course Name:** Computer Integrated Manufacturing

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-4, T-1

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: (1) IPE 201: Manufacturing Process I

(2) IPE 203: Manufacturing Process II

Synopsis/Rationale:

This course emphasizes the integration of manufacturing enterprise using computer-integrated manufacturing (CIM) technologies. It employs CAD/CAM interface and other CIM sub-systems, database management, facility layout, product documentation, process planning, production planning and control, Group technology, teamwork, and manufacturing operations and management to bring about a student's-designed CIM-oriented enterprise.

Objectives:

- 1. To develop an understanding of classical and state-of-the-art production systems, control systems, management technology, cost systems, and evaluation techniques.
- 2. To develop an understanding of computer-integrated manufacturing (CIM) and its impact on productivity, product cost, and quality.
- 3. To obtain an overview of computer technologies including computers, database and data collection, networks, machine control, etc., as they apply to factory management and factory floor operations.
- 4. To describe the integration of manufacturing activities into a complete system
- 5. To acquire sensitivity to human-factors related issues as they affect decision making in the factory environment.

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain the merit and demerits of applying group technology and cellular manufacturing in any kind of industry and analyze the feasibility of cellular manufacturing in that industry.	C2, C3	1	1	2,3	T, Mid Term Exam, F
CO2	Design and Propose an automated material handling system that ensure the minimum movement of the material even after satisfying every demand.	C3, C6	1,3	3	3,4	ASG, Mid Term Exam, F
CO3	Review and analyze the production system of any industry and identify the areas where	C4 - C6	1	1	5,6 ,8	ASG, Mid Term Exam, F

	automation can reduce the production time and unit production cost.				
CO4	Demonstrate the application of data management and its importance for decision making in CIMS environment.	3	1	5	T, ASG, R, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; Pr-Presentation; R-Report; $F-Final\ Exam$)

Course Contents:

Introduction: Scope, islands of automation, architecture of CIM, information flow in CIM, elements of CIM, benefits, limitations, obstacles in implementation., Product Design and CAD, application of computers in design, CAM - manufacturing planning and control, scope of CAD / CAM and CIM, concurrent engineering, design for manufacturing and assembly.

Concept, design and manufacturing attributes, part families, composite part, methods of grouping, PFA, Classification and coding system- OPITZ, Relevance of GT in CIM, GT and CAD, benefits and limitations of GT.

Computer Aided Process Planning and Control: need, retrieval and generative type CAPP, role of CAPP in CIM.

Flexible Manufacturing Systems: Concept, flexible & rigid manufacturing cell and FMS structure, types, components of FMS, Distributed Numerical Control (DNC), Building Blocks of FMS, Flexible Assembly System.

Computer Aided Production Planning and Control: Computer integrated production management system, aggregate planning, master production schedule, shop floor control, materials requirement planning, capacity planning, manufacturing resource planning and enterprise resource planning.

Computer Aided Quality Control: Objectives, non-contact inspection methods, equipment; contact type inspection: Co-ordinate Measuring Machines (CMM), construction, working principle and applications, Inspection robots.

Production Support Machines and Systems in CIM: Industrial robots for load/unload, automated material handling, automatic guided vehicles, automated storage and retrieval system. **Data Acquisition and Database Management Systems:** (a) Data acquisition system, type of data, automatic data identification methods, bar code technology, machine vision.(b) Data and database management system, database design requirements, types of DBMS models- hierarchical, network and relational models and their applications.

Planning and Implementation of CIMS: Planning for CIMS, need for planning, Phases of CIM implementation, incremental implementation and one time implementation, CIM benchmarking, Economic and social justification of CIM.

Mapping of Course Outcomes and Program Outcomes:

No.	Program Outcomes (PO)												
	Course Outcomes (CO)			of								ĕ	
	of the Course							ity				anc	
				int				bil			~	Ţ.	
		o		me			ety	ina			'orl	I pı	
		gp		lop			cie	sta			M (t ar	
		wle		Development		ıge	l Sc	Su			an	ıen	gu
		no	ysis	Ŏ		nse	anc	nnd		n	l Te	en	rni
		э Х	nal		n	oll	ær	nt 8		atic	and	nag	ea
		rin	ı A		atic	To	jine	me		nic	ıal	Ma	lg]
		nee	lem	us	tig	ern	guE	ron	Š	mu	idt	ct]	Loi
		ıgi	qo.	esig	ves	po	The Engineer and Society	ıvi	Ethics	Communication	div	oje.	fe]
		Engineering Knowledge	Problem Analysis	ω Design	1 Investigation	Wodern Tool Usage	LL	2 Environment and Sustainability	8 8	<u> </u>	Undividual and Team Work	Project Management and Finance	Ulfe Long Learning
001	T	1	2	5	4	3	6	/	8	9	10	11	12
CO1	Explain the merit and demerits of applying												
	demerits of applying group technology and												
	cellular manufacturing in												
	any kind of industry and												
	analyze the feasibility of												
	cellular manufacturing in												
	that industry.												
CO2	Design and Propose an												
	automated material												
	handling system that												
	ensure the minimum	$\sqrt{}$		V	V						$\sqrt{}$		
	movement of the			\ \ \	٧								
	material even after												
	satisfying every demand.												
CO3	Review and analyze the												
	production system of any												
	industry and identify the		,										
	areas where automation		V										
	can reduce the												
	production time and unit												
004	production cost.												
CO4	Demonstrate the												
	application of data												
	management and its importance for decision												
	-												
	making in CIMS environment.												
	environment.												

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	40
Revision	20
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	127

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Visualization using Computer Simulations, Assignments, Class Tests, Exams, Feedback at every step.

Lecture Schedule:

Week	Lecture	Topics	ASSESSMENT
1	Lec 1	Introduction: Scope, islands of automation,	
	Lec 2	architecture of CIM, information flow in CIM,	
	Lec 3	elements of CIM, benefits, limitations,	
		obstacles in implementation.	
2	Lec 4	Product Design and CAD, application of	Class Test 1, ASG
	Lec 5	computers in design, CAM - manufacturing	
	Lec 6	planning and control, scope of CAD / CAM and	
		CIM, concurrent engineering, design for	
		manufacturing and assembly.	
3	Lec 7	Concept, design and manufacturing attributes,	
	Lec 8	part families, composite part, methods of	
	Lec 9	grouping, PFA	
4	Lec 10	Classification and coding system- OPITZ,	
	Lec 11	Relevance of GT in CIM, GT and CAD,	
	Lec 12	benefits and limitations of GT.	
5	Lec 13 Computer Aided Process Planning and Control:		Class Tost 2 ASC
	Lec 14	need, retrieval and generative type CAPP, role	Class Test 2, ASG,
	Lec 15	of CAPP in CIM.	PR
6	Lec 16	Flexible Manufacturing Systems: Concept,	
	Lec 17	flexible & rigid manufacturing cell and FMS	
	Lec 18	structure, types, components of FMS	

7	Lec 19	Distributed Numerical Control (DNC),	
	Lec 20	Building Blocks of FMS, Flexible Assembly	
	Lec 21	System.	
8	Lec 22	Computer Aided Production Planning and	
	Lec 23	Control: Computer integrated production	
	Lec 24	management system, aggregate planning,	
		master	
9	Lec 25	Production schedule, shop floor control,	
	Lec 26	materials requirement planning, capacity	
	Lec 27	planning, manufacturing resource planning and	
		enterprise resource planning.	Mid Term
10	Lec 31	Computer Aided Quality Control: Objectives,	
	Lec 32	non-contact inspection methods, equipment;	
	Lec 33	contact type inspection: Co-ordinate Measuring	
		Machines (CMM), construction, working	
		principle and applications, Inspection robots.	
11	Lec 28	Production Support Machines and Systems in	
	Lec 29	CIM: Industrial robots for load/unload,	
	Lec 30	automated material handling, automatic guided	
		vehicles, automated storage and retrieval	
12	T 24	system.	
12	Lec 34	Data Acquisition and Database Management	
	Lec 35	Systems: (a) Data acquisition system, type of	
	Lec 36	data, automatic data identification methods, bar	
		code technology, machine vision.(b) Data and	
		database management system, database design requirements, types of DBMS models-	Class Tost 2 ASC
		requirements, types of DBMS models- hierarchical, network and relational modelsand	Class Test 3, ASG, R, PR, F
		their applications.	I, I I, I
13	Lec 37	Planning and Implementation of CIMS:	
	Lec 38	Planning for CIMS, need for planning, Phases	
	Lec 39	of CIM implementation, incremental	
		implementation and one time implementation,	
		CIM benchmarking, Economic and social	
		justification of CIM.	
14	Lec 40	Review for Final Exam	
	Lec 41		
	Lec 42		

(PR – Project; ASG – Assignment; PR – Presentation; R - Report; F – Final Exam)

Linkage of Course Outcomes with Assessment Methods and their Weights:

Assessment Strategies	CO	Bloom's Taxonomy
-----------------------	----	------------------

Components		Grading		
	Test 1-3	20%	CO 1 CO 3 CO 4	C2, C3 C4 - C6 C3 – C6
Continuous Assessment (40%)	Class Participa tion	5%	CO 2 CO 1	C3, C6 C1-C4
	Mid term	15%	CO 1 CO 2 CO 3	C2, C3 C3, C6 C4 - C6
Final Exam		60%	CO 1 CO 2 CO 3 CO 4	C2, C3 C3, C6 C4 - C6 C3 - C6
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

- 5 Automation, Production Systems, and Computer-integrated Manufacturing Mikell P. Groover
- 6 Computer-integrated manufacturing technology and systems Rembold, Ulrich, Christian Blume, and Ruediger Dillmann.

Reference Site:

https://classroom.google.com/ (To be announced)

Course Code: IPE 429 Course Name: Organizational Behavior

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-4, T-1

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: None

Rationale:

The main objective of Organizational Behavior course is to help the students to acquire and develop skill to take rational decisions in the process of Organizational Behavior by understanding the human interactions in an organization, finding what is driving it and influencing it for getting better results in attaining business goals. It details the impact of individual, group and organizational factors on human behavior. It highlights the significance of Challenges and Opportunities of OB, perception, attribution, learning, organizational change, organizational culture, motivation, leadership and conflict management.

Objectives:

- 1. To explain the organizational behavioral challenges in the Bangladeshi work environment.
- 2. To illustrate the impact of perception, personality and emotions.
- 3. To articulate the impact of values, attitudes and the influence of diversity.
- 4. To explain interpersonal conflict and conflict resolution.
- 5. To critique the most popular bases of power in organizations.

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO 1	List and define basic organizational behavior principles, and analyze how these influence behavior in the workplace.	C1,C4			1	T, Mid Term Exam, F
CO 2	Analyze individual human behavior in the workplace as influenced by personality, values, perceptions, and motivations.	C4	1		1	T,Mid Term Exam, F
CO 3	Outline the elements of group behavior including group dynamics, communication, leadership, power & politics and conflict & negotiation.	C1			1	Mid Term Exam, F
CO 4	Demonstrate your own management style as it relates to influencing and managing behavior in the organization systems.				1	T, ASG, R, F

	Demonstrate critical thinking and analysis					ASG, PR, R
CO	skills through the use of management case					
5	studies, personal application papers and small	C3	1,3	1	1	
3	group exercises.					
CO	Strengthen research, writing and presentation	C1,C2				ASG,PR,R
6	skills.	C1,C2				

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; PR-Prosentation; R-Report; PR-Project; PR-

Course Content:

Behavior of individuals in organizations: values and attitudes, motivation, group and group processes: group dynamics, communication, power & conflict, organizational system: structure, job design, appraisal of performance, processes of organizational change and development.

Mapping of Course Outcomes (CO) and Program Outcomes:

	(
	Course Learning Outcomes
P01	Engineering Knowledge
P02	Problem Analysis
P03	Design / Development of Solutions
P04	Investigation
P05	Modern Tool Usage
P06	The Engineer and Society
PO7	Environment and Sustainability
PO8	Ethics
PO9	Communication
PO10	Individual and Team Work
P011	Project Management and Finance
PO12	

CO1	List and define basic organizational behavior principles, and analyze how these influence behavior in the workplace.			√					
CO2	Analyze individual human behavior in the workplace as influenced by personality, values, perceptions, and motivations.			√					
CO3	Outline the elements of group behavior including group dynamics, communication, leadership, power & politics and conflict & negotiation.					V	V		
CO4	Demonstrate your own management style as it relates to influencing and managing behavior in the organization systems.			√					√
CO5	Demonstrate critical thinking and analysis skills through the use of management case studies, personal application papers and small group exercises.	√	V	٧			√	V	
CO6	Strengthen research, writing and presentation skills.						√	V	

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	40
Revision	20
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	127

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Assignments, Class Tests, Exams, Feedback at every step.

Lecture schedule:

Week 1	Organizational Behaviour: Introduction				
Class 1	Concept and definition of Organizational Behaviour.				
Class 2	Making sense of behaviour in organizations	Class Test			
Class 3	Challenges in the Bangladeshi workplace				
Week 2	Perception, Personality, and Emotions				
Class 4	Perception				

Class 5	Personality				
Class 6	Emotions				
Week 3	Values, Attitudes, and Their Effects in the Workplace				
Class 7	Values, Assessing cultural values				
Class 8	Values in the Bangladeshi workplace				
Class 9	Attitudes				
Week 4	Motivating Self and Others				
Class 10	Needs theories of motivation				
Class 11	Process theories of motivation				
Class 12	Responses to the reward system				
Week 5	Motivating Self and Others				
Class 13	Creating a motivating workplace: rewards and job redesign	Class Test			
Class 14	Caveat emptor				
Class 15	Apply motivation theories wisely				
Week 6	Working in Teams				
Class 16	Teams versus groups				
Class 17	Stages of group and team development				
Class 18	Twenty-first century teamwork: virtual teams				
Week 7	Communication				
Class 19	Communication process	Mid			
Class 20	Barriers to effective communication	Term Exam			
Class 21	Current issues in communication				
Week 8	Conflict, and Negotiation				
Class 22	How communication breakdown leads to conflict				
Class 23	Conflict resolution				
Class 24	Negotiation				
Week 9	Power and Politics				

Class 25	Bases of power						
Class 26	Dependency: the key to power						
Class 27	Influence tactics						
Week 10	Power and Politics						
Class 28	Empowerment: giving power to employees						
Class 29	Abuse of power: harassment in the workplace						
Class 30	Politics: power in action						
Week 11	Leadership						
Class 31	Leadership as supervision						
Class 32	Inspirational leadership						
Class 33	Contemporary leadership roles						
Week 12	Decision Making, Creativity, and Ethics						
Class 34	Group decision making						
Class 35	Creativity in organizational decision making	Class					
Class 36	Corporate social responsibility	Test 3					
Week 13	Organizational Culture and Change						
Class 37	Concept and definition of Organizational culture and change.						
Class 38	Creating and sustaining an organization's culture						
Class 39	Liabilities of organizational culture						
Week 14	Organizational Culture and Change						
Class 40	Approaches to managing change						
Class 41	Resistance to change						
Class 42	Review						

(PR – Project; ASG – Assignment; PR – Presentation; R - Report; F – Final Exam)

Linkage of Course Outcomes with Assessment Methods and their Weights:

Assessment Strategies			CO	Bloom's Taxonomy
Components	Components			Discuss 2 unionomy
			CO 1	C1,C4
	Test 1-3	20%	CO 2	C4
Continuous			CO 4	C2
Assessment (40%)	Class Participa tion	5%	CO 6	C1,C2
	Mid term	15%	CO 3	C1
			CO 1	C1,C4
Final Exam		60%	CO 2	C4
			CO 3	C1
			CO 4	C2
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Reference Books:Langton, Robbbins and Judge, Fundamentals of Organizational Behaviour, 4th Canadian Edition, Pearson.

Bounce Back, Nelson Press.

Reference Site:

https://classroom.google.com/ (To be announced)

Course Code: IPE 435 **Course Name:** Metal Cutting Process

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-4, T-2

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: (1) IPE 201: Manufacturing Process I

(2) IPE 202: Manufacturing Process I Sessional

(3) IPE 203: Manufacturing Process II

(4) IPE 203: Manufacturing Process II Sessional

Synopsis/Rationale:

This Outcome Based Education (OBE) based course is designed to conduct in depth study on metal cutting, geometry of cutting tool, chip tool interface, cutting forces, heat generation in metal cutting, cutting tool materials and machinability.

Objectives:

- i. To conduct study on geometry of metal cutting tool.
- ii. To expose students to theory of metal cutting.
- iii. To conduct study on cutting forces.
- iv. To conduct study on heat generation in metal cutting.
- v. To expose students to various cutting tool materials and machinability of materials.

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO 1	Define and explain geometry of metal cutting tool	C1-C4	1		1-4	T, Mid Term
CO 2	Explain various theories related to metal cutting.	C1-C4	1		1-4	T, Mid Term
CO 3	Explain the influence of various factors on forces in metal cutting.	C3, C4, C5	2	1	1-4	T, Mid Term Exam, F
CO 4	Derive expressions for generation of heat in metal cutting.	C2-C5			1-4	T, F
CO 5	Analyze machinability of materials based on the machinability criteria.	C2-C5	1		1-4	T, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; Pr-Presentation; R-Report; $F-Final\ Exam$)

Course Contents:

Introduction, historical background, essential features of metal cutting, turning: tool point reference system; Geometry of single point cutting tool; Mechanism of chip formation; Classification of chips.

Chip-tool interface; Chip flow under the condition of seizure, built-up edge, machined surface; Forces acting on the cutting tool, stress on the shear plane, minimum energy theory, stress on the tool, work done and power consumption in metal cutting; Effect of various factors on cutting forces, formulae for calculating components of cutting force, measurement of cutting force and dynamometry.

Heat generation in metal cutting: sources of heat and its distribution, temperature field of the chip and the tool, formulae for calculation of cutting temperatures, effect of various factors on cutting temperature, heat flow, methods of tool temperature measurement, temperature distribution in tool, relationship of tool temperature and cutting speed;

Cutting tool materials: tool life, conditions of use, HSS, cemented carbide, ceramic tools. Ultra-hard tool materials: alumina based composites, sialon, diamond, cubic boron nitride. Machinability: magnesium, aluminum, copper, steel and cast iron, nickel, zirconium, titanium and their alloys; Methods of machinability improvement. Coolants and lubricants.

Mapping of Course Outcomes and Program Outcomes:

Course Learning Outcomes				Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Project Management and Finance	Life Long Learning
		P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012
CO1	Define and explain geometry of metal cutting tool	٧	٧										
CO2	Explain various theories related to metal cutting.	7	٧										

CO3	Explain the influence of various factors	٧	٧					
	on forces in metal cutting.							
CO4	Derive expressions for generation of	٧	7					
	heat in metal cutting.	_	_					
CO5	Analyze machinability of materials	٧	٧					
	based on the machinability criteria.	•	•					

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	40
Revision	20
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	127

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Assignments, Class Tests, Exams, Feedback at every step.

Lecture Schedule:

Week	Lecture	Topics	ASSESSMENT
1	Lec 1	Introduction,	
	Lec 2	historical background	
	Lec 3	essential features of metal cutting	
2	Lec 4	Tool nomenclature of single point cutting tool	
	Lec 5	tool point reference system	
	Lec 6	Geometry of single point cutting tool;	ASG, Class Test 1,
3	Lec 7	Mechanism of chip formation;	F
	Lec 8	Classification of chips.	

	Lec 9	Chip-tool interface;	
4	Lec 10	Chip flow under the condition of seizure	
	Lec 11	built-up edge,	
	Lec 12	machined surface;	
5	Lec 13	Forces acting on the cutting tool,	
	Lec 14	stress on the shear plane,	
	Lec 15	minimum energy theory,	
6	Lec 16	stress on the tool,	ASG, Class Test 2,
	Lec 17	work done and power consumption in metal cutting;	F
	Lec 18	Effect of various factors on cutting forces,	
7	Lec 19	formulae for calculating components of cutting	
		force,	
	Lec 20	Measurement of cutting force and	
		dynamometry.	
	Lec 21	Revision	
8	Lec 22	Heat generation in metal cutting:	
	Lec 23	sources of heat and its distribution,	
	Lec 24	temperature field of the chip and the tool,	
9	Lec 25	formulae for calculation of cutting temperatures,	
	Lec 26	effect of various factors on cutting temperature,	ASG, Mid Term, F
	Lec 27	methods of tool temperature measurement,	
10	Lec 28	temperature distribution in tool,	
	Lec 29	relationship of tool temperature and cutting speed;	
	Lec 30	Cutting tool life,	
11	Lec 31	conditions of use,	
	Lec 32	HSS, cemented carbide, ceramic tools.	
	Lec 33	Ultra-hard tool materials:	
12	Lec 34	alumina based composites,	ASG, Class Test 3,
	Lec 35	sialon, diamond, cubic boron nitride.	F

	Lec 36	Machinability	
13	Lec 37	magnesium, aluminum, copper,	
	Lec 38	steel and cast iron,	
	Lec 39	nickel, zirconium, titanium and their alloys;	ASG, F
14	Lec 40	Methods of machinability improvement.	1153,1
	Lec 41	Coolants and lubricants.	
	Lec 42	Review	

(PR – Project; ASG – Assignment; PR – Presentation; R - Report; F – Final Exam)

Linkage of Course Outcomes with Assessment Methods and their Weights:

Asses	sment Strate	egies	СО	Dlaam's Tayanamy
Components		Grading	CO	Bloom's Taxonomy
			CO1	C1-C4
	Test 1-3	20%	CO3	C2-C4
			CO4	C2-C4
	Class		CO 3	C2-3
Continuous	Participa tion	5%	CO5	C2-4
Assessment (40%)	Attendan ce	5%	-	-
	Mid term	10%	CO 1	C1-C4
			CO 2	C3, C4
	term		CO 3	C2-C4
			CO 1	C1-C4
Final Exam		60%	CO 3	C3, C5
Tillal Exalli		0070	CO 4	C2-C5
			CO 5	C2-C5
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

- g) Metal Cutting: Theory & Practice A. Bhattacharyya
- h) "Fundamentals of Metal Cutting and Machine Tools" by B L Juneja and G S Sekhon

i) "Metal Cutting Principles" by M C Shaw

j) "Metal Cutting and Tool Design" by Dr B J Ranganth

k) "Metal Cutting Theory and Practice" by David A Stephenson

Reference Site:

https://classroom.google.com/ (To be announced)

Course Code: IPE 439 Course Name: Green Manufacturing

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-4, T-1

Curriculum Structure: Outcome-Based Education (OBE)

Pre-requisites: None

Synopsis/Rationale:

This Outcome-Based Education (OBE) based course is designed to provide an overview of green technologies and green jobs in manufacturing. Students will develop the skills necessary to preserve and restore environmental quality and create a green working environment for the industry. This course introduces students to local, state, and national green/clean/lean/sustainable resources, share industry success stories (learn how business neighbors are implementing sustainable practices) and gather input from industries on what educators should be doing to prepare the current/future green workforce.

Objectives:

- 1. To offer a comprehensive overview of green manufacturing.
- 2. To provide practice-oriented information to help students find the green manufacturing methods for the intended applications.
- 3. To introduce and explain the design concepts, methods, tools, and some technologies, and operations of sustainable lean and green manufacturing systems and processes.
- 4. To design and maintenance of sustainable green manufacturing products, processes, service systems, and leads towards the entire greening process of multi-lifecycle manufacturing operations, factories, and their supply chains.

5. To understand the structures of sustainable manufacturing, environmental, and management practice.

Course Outcomes (CO) & Generic Skills:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain the design concepts, methods, tools, the key technologies, and the operation of sustainable green manufacturing.	C1-C3	1		3	T, Mid Term, F
CO2	Apply the principles, techniques, and methods to customize the learned generic concepts to meet the needs of a particular industry/enterprise.	C4	3	2		Mid Term Exam, F, R
соз	Identify the strategies to satisfy a set of given sustainable green manufacturing requirements.	C1, C4	2	5	3	Mid Term Exam,F,PR ,Pr
CO4	Design the rules and processes to meet the market need and the green manufacturing requirements by selecting and evaluating suitable technical, managerial / project management, and supply chain management schemes.	C4	3	5	1, 3	Mid Term Exam,F
(CP- (Complex Problems, CA-Complex Activities	KP-Knowle	dge Pro	ofile T	L '-Test Pi	R _ Project

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam)

Course Contents:

Introduction to lean sustainable green manufacturing. Analytical methods and computational assessment and design tools for evaluating and designing green manufacturing sustainability processes, requirements, and risks. The sustainable lean and green audit process. International green manufacturing standards and compliance. Green rapid prototyping and rapid manufacturing.

Green flexible automation. Globally green manufacturing supply chains and logistic networks. Sustainable green manufacturing system design and project management.

Life Cycle Assessment in Sustainable Green Manufacturing. Statistics in sustainability (for quantification). Optimization for sustainability. Optimization for sustainability continued. Design of Experiments for Green Manufacturing Systems. Value Engineering Green Plan. Design for Sustainability and Maintenance. Green transportation models. Sustainable Manufacturing facility development. Design of Higher Education for Sustainable development.

Mapping of Course Outcomes and Program Outcomes: Teaching-learning and Assessment Strategy:

Course Learning Outcomes		Engineering Knowledge	Problem Analysis	Design / Development of	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Project Management and	Lil
		P01	PO2	PO3	PO4	P05	90d	PO7	PO8	PO9	PO10	P011	PO12
CO1	Explain the design concepts, methods, tools, the key technologies, and the operation of sustainable green manufacturing.	V		√		√		V					
CO2	Apply the principles, techniques, and methods to		V		V						V		
	customize the learned generic concepts to meet the needs of a particular industry/enterprise.												

CO3	Identify the strategies to satisfy a set of given									
	sustainable green			$\sqrt{}$						$\sqrt{}$
	manufacturing requirements.									
CO4	Design the rules and									
CO4	processes to meet the									
	market need and the green									
	manufacturing									
	requirements by selecting and evaluating suitable		$\sqrt{}$						1	۱ ا
	technical, managerial /		V			V			V	V
	project management, and									
	supply chain management									
	schemes.									
Teachir	ng and Learning Activities]	Engag (ho	gemei urs)	nt
Face-to	-Face Learning									
	Lecture							4	2	
	Practical / Tutorial / Studio							-	-	
	Student-Centred Learning							-	-	
Self-Di	rected Learning									
	Non-face-to-face learning							4	0	
	Revision							2	0	
	Assessment Preparations							1	9	
Formal	Assessment									
	Continuous Assessment							2	2	
	Final Examination							3	3	
Total								12	26	

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Assignments, Class Tests, Exams, Feedback at every step.

Lecture Schedule:

Week	Lecture	Topics	ASSESSMENT
1	1	Introduction to Advanced Green Manufacturing Systems.	
	2	General Concepts in Sustainable Green Manufacturing.	
2	1	Life Cycle Assessment in Sustainable Green Manufacturing.	
	2	Statistics in sustainability (for quantification)	
3	1	Statistics in sustainability (for quantification) (cont.)	
	2	Mechanical/Manufacturing Engineering Technology Curriculum Concerns	CT 1 to be held on these topics
4	1	Optimization for sustainability	
	2	Optimization for sustainability (cont.)	
5	1	Optimization for sustainability continued	
	2	Optimization for sustainability continued (cont.)	
6	1	Design of Experiments for Green Manufacturing Systems	
	2	Design of Experiments for Green Manufacturing Systems (cont.)	CT 2 to be held on these topics, ASG,
7	1	Value Engineering Green Plan	. PR
	2	Value Engineering Green Plan (cont.)	
8	1	Design for Sustainability and Maintenance	
	2	Design for Sustainability and Maintenance (cont.)	
9	1	Green transportation models	

	2	Green transportation models (cont.)	CT 3 to be held on
10	1	Green Manufacturing techniques	these topics
	2	Green Manufacturing techniques (cont.)	-
11	1	Life Cycle Assessment (software demonstration)	
	2	Life Cycle Assessment (software demonstration) (cont.)	
12	1	Sustainable Manufacturing facility development	
	2	Sustainable Manufacturing facility development (cont.)	
13	1	Design of Higher Education for Sustainable development	CT 4 to be held on these topics, ASG,
	2	Design of Higher Education for Sustainable development (cont.)	PR
14	1	Description of Proposed Course for Sustainable Green Manufacturing	
	2	Course Review for Final Exam	

(PR – Project; ASG – Assignment)

Linkage of Course Outcomes with Assessment Methods and their Weights:

Comp	oonents	Grading	CO	Bloom's Taxonomy
	Test 1-3	20%	CO 1	C1 - C4
			CO 2	C2 - C4
			CO 4	C2
Continuous Assessment	Class		CO 1	C3, C4
(40%)	Participation	5%	CO 5	A3
	Mid-term	15%	CO 3	C1 - C4
			CO 4	C3, C4
			CO 1	C1- C4

		CO 2	C3, C4
Final Exam	60%	CO 3	C2 - C4
		CO 4	C2
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

- 1. Dornfeld and David, Green Manufacturing Fundamentals and Applications.
- 2. Davim J and Paulo, Green Manufacturing Processes and Systems.
- 3. **David A. Dornfeld**, Green Manufacturing: Fundamentals and Applications.

Reference Site:

https://classroom.google.com/ (To be announced)

Course Code: IPE 441 Course Name: Modern Manufacturing Process

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-4, T-2

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: 1. IPE 105: Engineering Materials

2. IPE 107: Engineering Economy

3. IPE 201: Manufacturing Processes I

4. IPE 203: Manufacturing Processes II

Synopsis/Rationale:

This Outcome Based Education (OBE) based course is designed to introduce students to the systematic modern manufacturing approach. It emphasizes feasible manufacturing processes which are used in modern industries. A better understanding of the modern manufacturing process provides better visualization to the unique difficulties of manufacturing and their feasible solution.

Objectives:

- 1. To offer a comprehensive overview of advanced materials manufacturing processes
- 2. To provide practice-oriented information to help students find the right manufacturingmethods for the intended applications
- 3. To critically review extant literature and case studies in order to explicate product and suggest remedies
- 4. To assess solutions for material science problems in industry
- 5. To differ the traditional manufacturing processes from nontraditional, emerging, modern and innovative manufacturing technologies, some of which have been used only recently in mass production

Course Outcomes (CO) & Generic Skills:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Model the material removal in various modern manufacturing processes.	C1-C3	1		3	T, Mid Term ,F
CO2	Analyze the processes and evaluate the role of each process parameter during machining of various advanced materials.	C4	3	2		Mid Term Exam,F,R

CO3	Solve the various problems for the given profiles to be imparted on the work specimens.	C1, C4	2	5	3	Mid Term Exam,F,PR ,Pr
CO4	Select the best process out of the available various advanced manufacturing processes for the given job assignment.	C4	3	5	1, 3	Mid Term Exam,F
CO5	Explain requirements to achieve maximum material removal rate and best quality of machined surface while machining various industrial engineering materials.	C1, C4	3	2	2	Mid Term Exam,F, T,ASG
CO6	Demonstrate commitment towards class ethics.	A3	1			ASG, PR, R

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam)

Course Contents:

Ultrasonic Machining (USM): Introduction, equipment, tool materials & tool size, abrasive slurry, cutting tool system design: - Effect of parameters on Material removal rate, tool wear, Accuracy, surface finish, applications, advantages & Disadvantages of USM.

Abrasive Jet Machining (AJM): Introduction, Equipment, Variables in AJM: Carrier Gas, Type of abrasive work material, standoff distance (SOD), nozzle design, shape of cut. Process characteristics-Material removal rate, Nozzle wear, Accuracy & surface finish. Applications, advantages & Disadvantages of AJM. Water Jet Machining: Principle, Equipment, Operation, Application, Advantages and limitations of Water Jet machining.

Electrochemical Machining (ECM): Introduction, study of ECM machine, elements of ECM process: ECM Process characteristics – Material removal rate, Accuracy, surface finish, Applications, Electrochemical turning, Grinding, Honing, deburring, Advantages, Limitations.

Chemical Machining (CHM): Introduction, elements of process, chemical blanking process, process characteristics of CHM: material removal rate, accuracy, surface finish, Hydrogen embrittlement, advantages & application of CHM.

Electrical Discharge Machining (EDM): Introduction, mechanism of metal removal, dielectric fluid, spark generator, EDM tools (electrodes) Electrode feed control, EDM process

characteristics: metal removal rate, accuracy, surface finish, Heat Affected Zone. Machine tool selection, Application, electrical discharge grinding, wire EDM.

Plasma Arc Machining (PAM): Introduction, equipment, non-thermal generation of plasma, selection of gas, Mechanism of metal removal, PAM parameters, process characteristics. Applications, Advantages and limitations.

Laser Beam Machining (LBM): Introduction, equipment of LBM mechanism of metal removal, LBM parameters, Process characteristics, Applications, Advantages & limitations.

Electron Beam Machining (EBM): Principles, equipment, operations, applications, advantages and limitation of EBM.

Introduction to Surface engineering: High speed machining and grinding: Application of advanced coatings in high performance modern cutting tools and high performance super abrasive grinding wheels, Micro and nano machining of glasses and ceramics. Theory and application of chemical processing: Chemical Machining, aching of semi-conductors, Coating and Electroless forming, PVD and CVD.

Rapid prototyping: Basic Principle of Rapid Prototyping Processes, Rapid Prototyping Processes, Selective Laser Sintering, Fused Deposition Modeling, Applications of RP Technologies.

Mapping of Course Outcomes and Program Outcomes:

(H – High, M- Medium, L-low)

Teaching-learning and Assessment Strategy:

Course Learning Outcomes	Engineering Knowledge	Problem Analysis	Design / Development of	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Project Management and Finance	Ţ
	P01	P02	PO3	P04	P05	90d	PO7	PO8	P09	PO10	P011	PO12

CO1	Model the material removal in various modern manufacturing processes.	V	√		V							
CO2	Analyze the processes and evaluate the role of each process parameter during machining of various advanced materials.			V		V				√		
CO3	Solve the various problems for the given profiles to be imparted on the work specimens.		√		√		V					√
CO4	Select the best process out of the available various advanced manufacturing processes for the given job assignment.	$\sqrt{}$	√	V							√	√
CO5	Explain requirements to achieve maximum material removal rate and best quality of machined surface while machining various industrial engineering materials.	√	√			√						
CO6	Demonstrate commitment towards class ethics.							V				
Teachi	ng and Learning Activities						•		I	Engag (ho		nt
Face-to	-Face Learning											
	Lecture									4	2	
	Practical / Tutorial / Studio									-	-	
	Student-Centred Learning									-	-	

Self-Directed Learning	
Non-face-to-face learning	40
Revision	22
Assessment Preparations	18
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	127

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Assignments, Class Tests, Exams, Feedback at every step.

Lecture Schedule:

Week	Lecture	Topics	ASSESSMENT
1	1	Ultrasonic Machining (USM): Introduction, equipment, tool materials & tool size, abrasive slurry.	
	2	Ultrasonic Machining (USM): Cutting tool system design: - Effect of parameters on Material removal rate, tool wear.	
2	1	Ultrasonic Machining (USM): Accuracy, surface finish, applications, advantages & Disadvantages of USM.	
	2	Abrasive Jet Machining (AJM): Introduction, Equipment, Variables in AJM: Carrier Gas, Type of abrasive work material, standoff distance (SOD).	
3	1	Abrasive Jet Machining (AJM): Nozzle design, shape of cut. Process characteristics-Material removal rate.	
	2	Abrasive Jet Machining (AJM): Nozzle wear, Accuracy & surface finish. Applications, advantages & Disadvantages of AJM. Water Jet Machining: Principle,	

		Equipment, Operation, Application, Advantages and limitations of Water Jet machining.	CT 1 to be held on these topics
4	1	Electrochemical Machining (ECM): Introduction, study of ECM machine, elements of ECM process: ECM Process characteristics – Material removal rate.	
	2	Electrochemical Machining (ECM): Accuracy, surface finish, Applications, Electrochemical turning.	
5	1	Electrochemical Machining (ECM): Electrochemical Grinding, Honing, deburring, Advantages, Limitations.	
	2	Chemical Machining (CHM): Introduction, elements of process, chemical blanking process.	
6	1	Chemical Machining (CHM): Process characteristics of CHM: material removal rate, accuracy.	
	2	Chemical Machining (CHM): Surface finish, Hydrogen embrittlement, advantages & application of CHM.	CT 2 to be held on
7	1	Electrical Discharge Machining (EDM): Introduction, mechanism of metal removal, dielectric fluid.	these topics, ASG,
	2	Electrical Discharge Machining (EDM): Spark generator, EDM tools (electrodes) Electrode feed control, EDM process characteristics.	
8	1	Electrical Discharge Machining (EDM): Metal removal rate, accuracy, surface finish, Heat Affected Zone. Machine tool selection, Application, electrical discharge grinding, wire EDM.	
	2	Plasma Arc Machining (PAM): Introduction, equipment, non-thermal generation of plasma.	
9	1	Plasma Arc Machining (PAM): Selection of gas, Mechanism of metal removal.	
	2	Plasma Arc Machining (PAM): PAM parameters, process characteristics. Applications, Advantages and limitations.	

10	1	Laser Beam Machining (LBM): Introduction, equipment of LBM mechanism of metal removal.	CT 3 to be held on these topics
		of LBW meenamsm of mean femoval.	these topics
	2	Laser Beam Machining (LBM): LBM parameters,	
		Process characteristics, Applications, Advantages &	
		limitations.	
11	1	Electron Beam Machining (EBM): Principles,	
		equipment, operations.	
	2	Electron Beam Machining (EBM): Process, applications,	
		advantages and limitation of EBM.	
12	1	Introduction to Surface engineering: High speed	
12		machining and grinding.	
	2	Application of advanced coatings in high performance	
		modern cutting tools and high performance super abrasive	
		grinding wheels.	
13	1	Micro and nano machining of glasses and ceramics. Theory	CT 4 to be held on
		and application of chemical processing: Chemical	these topics, ASG,
		Machining, aching of semi-conductors, Coating and	PR
		Electroless forming, PVD and CVD.	
	2	Rapid prototyping: Basic Principle of Rapid Prototyping	
		Processes, Rapid Prototyping Processes.	
14	1	Stereolithography: Selective Laser Sintering, Fused	
		Deposition Modeling, Applications of RP Technologies.	
	2	Course Review for Final Exam	

(PR – Project; ASG – Assignment)

Linkage of Course Outcomes with Assessment Methods and their Weights:

Components	Grading	СО	Bloom's Taxonomy
Test	1-3 20%	CO 1	C1 - C4

			CO 2	C2 - C4
			CO 4	C2
Continuous Assessment	Class		CO 1	C3, C4
(40%)	Participation	5%	CO 6	A3
	Mid term	15%	CO 3	C1 - C4
			CO 4	C3, C4
			CO 1	C1- C4
			CO 2	C3, C4
Final	Exam	60%	CO 3	C2 - C4
			CO 4	C2
			CO 5	C3, C4
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

- 1. Pandey, P.C. and Shan H.S., Modern Machining Processes, Tata McGraw Hill (2004).
- 2. Mishra, P.K., Non-Conventional Machining, Narosa Publications (2006).
- 3. Hofy, H.E., Advanced Manufacturing Process, B and H Publication (1998).
- 4. Jain, V.K., Advanced Machining processes, Allied Publishers Private Limited (2004).
- 5. Ghosh, A. and Mullik, A., Manufacturing Science, East –West private Limited (2010).

Reference Site:

https://classroom.google.com/ (**To be announced**)

Course Code: IPE 443 Course Name: Total Quality Management

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L- 4, T-1

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: None

Rationale:

The objectives of this course is to generate knowledge and skills of students to use models and quality management methodology for the implementation of total quality management in any sphere of business and public sector.

Objective:

- 1. Implement the principles and concepts inherent in a Total Quality Management (TQM) approach to managing a manufacturing or service organization.
- 2. Understand the philosophies--including similarities and differences--of the gurus of TQM in order to better evaluate TQM implementation proposals offered by quality management organizations and consultants.
- 3. Successfully implement process improvement teams trained to use the various quality tools for identifying appropriate process improvements.
- 4. Assess exactly where an organization stands on quality management with respect to the ISO 9000 quality management standard and the Baldrige Award criteria.

Course Outcomes (CO):

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Outline business excellence models and be able assess organization's performance making reference to their criteria	C1-C4	1	2	1	T, Mid Term Exam, F
CO2	Implement the principles of total quality management and understand peculiarities of their implementation	C1-C4	1	1	1	T, Mid Term Exam, F

CO3	Analyze quality management methods and solve problems of organization	C3, C4	2	1	2	T, Mid Term Exam, F
CO4	Explain prerequisites of evolution of total quality management and significance of quality gurus' works to the management of modern organizations.	C2,C3	1	2	2	T, Mid Term Exam, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, $T-Test\ ; PR-Project\ ; Q-Quiz; ASG-Assignment; Pr-Presentation; R-Report; F-Final Exam)$

Course Content:

TQM definition, origins and growth of TQM, benefits of TQM, philosophies of TQM: quality circle approach, Deming's approach, Juran's approach, Philip Crosby's approach.

Planned implementation of TQM: planning and commitment, participation, continuous improvement.

Mapping of Course Outcomes (CO) and Program Outcomes:

Course Learning Outcomes	Engineering Knowledge Problem Analysis Design / Development of Solutions Investigation Modern Tool Usage The Engineer and Society Environment and Sustainability Ethics Communication Individual and Team Work Project Management and Life Long Learning
--------------------------	--

		P01	PO2	PO3	PO4	P05	90d	PO7	P08	P09	PO10	P011	PO12
CO1	Outline business excellence models and be able assess organization's performance making reference to their criteria	,		√		V							
CO2	Implement the principles of total quality management and understand peculiarities of their implementation		1		1								
CO3	Analyze quality management methods and solve problems of organization		V	√							√		
CO4	Explain prerequisites of evolution of total quality management and significance of quality gurus' works to the management of modern organizations.	J				√							

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	10
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	40
Revision	20
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	2

Final Examination	3
Total	137

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Assignments, Class Tests, Exams, Feedback at every step.

Lecture schedule:

Week 1		ASSESSM ENT
Class 1	Orientation and Course Preview	
Class 2 & 3	Overview of Quality and Total Quality Management	
Week 2		ASG, Class
Class 4 & 5	The TQM Gurus: Crosby, Deming, and Juran	Test 1, F
Class 6	Organization for total quality, process management	
Week 3		
Class 7	Leadership and empowerment	
Class 8 & 9	Quality teams and teamwork processes	
Week 4		ASG,
Class 10,11,12	Cost of Quality	Class Test 2,
Week 5		F
Class 13, 14,15	Organization for total quality, process management	
Week 6	System models	
Class 16,17,18	Quality teams and teamwork processes	ASG, Mid

	Term, F
Basic problem solving tools for quality improvement	
Quality through planning and design: QFD, policy deployment, design for six sigma.	ASG,
	Class
Quality through improvement: Six sigma, lean six sigma, kaizen, 5S, SPC	Test 3, F
Quality standards and award models	
TQM implementation and case studies	
Programmable Logic Controller	ASG, F
Sustaining Leadership Through Quality	ASG, F
	_
SPECIAL TOPIC (TO BE ASSIGNED)	-
	-
Review	
	Quality through planning and design: QFD, policy deployment, design for six sigma. Quality through improvement: Six sigma, lean six sigma, kaizen, 5S, SPC Quality standards and award models TQM implementation and case studies Programmable Logic Controller Sustaining Leadership Through Quality SPECIAL TOPIC (TO BE ASSIGNED)

(PR – Project; ASG – Assignment; PR – Presentation; R - Report; F – Final Exam)

Linkage of Course Outcomes with Assessment Methods and their Weights:

Asses	sment Strate	egies	СО	Bloom's Taxonomy
Components		Grading		,
	Test 1-3	20%	CO 1	C1-C4

			CO 3	C2-C4
			CO 2	C2
Continuous	Class Participa	5%	CO 2	C3, C4
Assessment (40%)	tion	370	CO 3	A3
(1070)			CO 1	C1-C4
	Mid term	15%	CO 2	C3, C4
			CO 3	C2-C4
			CO 1	C1-C4
Final Exam		60%	CO 2	C3, C4
		3070	CO 3	C2-C4
			CO 2	C2
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Reference Books:

- 1. Oakland G. F. Total Quality Management, Oxford, 2003. (Text)
- 2. Evans, J.R., Quality and Performance Excellence: Management, Organization and Strategy, Thomson South-Western, 2007.
- 3. Goetsch, D.L. and Davis, S.B. Quality Management, Prentice Hall, 2006

Course Code: IPE 449 Course Name: Industrial Fire Safety

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-4, T-2

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: None

Synopsis/Rationale:

This course is aimed to imparting knowledge to and development of skills for students, by giving a strong base for industrial and building fire safety.

Objectives:

- 1. To introduce the concepts of fire protection/suppression principles & systems currently followed in industrial sector
- 2. To brief the legislation requirements-national/international codes/ standards from fire & safety perspective
- 3. To provide students with knowledge about how to reduce fire risks, deal with fires if appropriate and escape safely in the event of fire.

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain the causations and extinguishment of different kinds of fire	C1, C2	1		1	T, Mid Term Exam, F
CO2	Describe different stages of fire, harmful products-health effects & behavior and demonstrate the usage of various fire extinguishers	C2, C3	1	1	1,6	ASG, Mid Term Exam, F
CO3	Identify & explain different types of fire protection systems/installations in industry	C2	1, EP 2	1	1,6	T, ASG, F
CO4	Elucidate various hazards & safety measures associated with flammable/combustible workspace materials	C1-C3	1	1,4	1,7	T, Mid Term Exam, ASG, R, F
CO5	Explicate types, cusses & consequences of explosions and associated safety measures	C1, C2	1		1	ASG, PR, R, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; PR-Project; PR-Pro

Course Contents:

Course overview, Importance of this course for industrial engineers, Fire, History of fires, Classifications of fires, Recognition of possible fire sources and their causes, National Fire Protection Association and Occupational Safety and Health Administration standards, Human behaviour in fire, The measures needed to overcome behavioural problems and to ensure the safe evacuation of people in the event of fire, Fire risk assessment, Fire Alarms & fire detection, Fire resisting construction & compartmentation, Active fire safety for building Protection, Fire suppression & protection, Fire Protection system, Prevention of failure, fire prevention Measures.

Mapping of Course Outcomes and Program Outcomes:

					Pr	ogra	m O	utcome	es (Po	O)			
No.	Course Outcomes (CO) of the Course	Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Project Management and Finance	Life Long Learning
		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Explain the causations and extinguishment of different kinds of fire	V	$\sqrt{}$										
CO2	Describe different stages of fire, harmful products-health effects & behavior and demonstrate the usage of various fire extinguishers	√			V	V							
CO3	Identify&explaindifferent typesof fireprotectionsystems/installations in industry	√		$\sqrt{}$		V							V
CO4	Elucidate various hazards & safety measures associated with flammable/combustible workspace materials	V	V	V	V	V		V					
CO5	Explicate types, cusses & consequences of explosions and	$\sqrt{}$											$\sqrt{}$

associated	safety						
measures							

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	40
Revision	20
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	127

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Visualization using Computer Simulations, Assignments, Class Tests, Exams, Feedback at every step.

Lecture Schedule:

Week	Lecture	Topics	ASSESSMENT
1	Lec 1	Course overview, Importance of this course for	
		industrial engineers.	
	Lec 2	Fire, History of fires, Classifications of fires	
	Lec 3	Recognition of possible fire sources and their	
		causes	Class Test 1, ASG,
2	Lec 4	National Fire Protection Association and	F
	Lec 5	Occupational Safety and Health Administration	
	Lec 6	standards (BNBC, NIOSH, OSHA)	
3	Lec 7	Understanding fire: Human behaviour in fire	
	Lec 8	The measures needed to overcome behavioural	
		problems and to ensure the safe evacuation of	
		people in the event of fire	
	Lec 9	Devising procedures in the event of fire,	
		Assisting disabled people to escape	

4	Lec 10	Fine mists assessment atmesture and layout	T
4		Fire risk assessment structure and layout,	
	Lec 11 Lec 12	Means of escape principles and requirements	
	_	Fire signage: National requirements	
5	Lec 13	Fire Alarms & fire detection: Basic	
	Lec 14	components, and testing	
	Lec 15	Emergency lighting: When it is required, Basic	
		components, and testing, Alternatives to	Class Test 2, ASG,
		emergency lighting	PR, F
6	Lec 16	Emergency Plans & Staff Training	
	Lec 17	Highly Flammables & LPG	
	Lec 18	Fire-fighting equipment requirements	
7	Lec 19	Fire resisting construction & compartmentation	
	Lec 20	Active fire safety for building	
	Lec 21	Protection	
		Automatic roof vents	
8	Lec 22	Fire suppression & protection, Classification of	
	Lec 23	fire protection systems-Active & Passive:	
	Lec 24	Active FPS- Definitions, classifications- Water	
		Based (Vs) Non water based & Fixed (Vs)	
		Portable/Mobile	
9	Lec 25	Fire Extinguishers, Fire hydrants, Sprinklers	
	Lec 26	standpipe systems, water spray systems	
	Lec 27	Water as an extinguishing agent	Mid Term, F
			,
10	Lec 31	Basic Components of a Fire Protection system	
	Lec 32	Fire water supply systems-Types, Design	
	Lec 33	philosophy acc.to OISD, Foam, DCP & other	
		gaseous extinguishing agents	
11	Lec 28	Passive FPS- Fire Resistance: Basic	
		Concepts(philosophy)	
	Lec 29	Materials used & their Fire Resistance ratings,	
		Fire Resistance tests	
	Lec 30	Fire Proofing: Introduction, materials used in	Class Test 3, ASG,
		coatings & paintings	R, PR, F
12	Lec 34	Concrete as a fire proofing material; Exit &	
		Egress Arrangements: Basic definitions	
	Lec 35	<i>S G</i>	
		Exit, Means of Egress system, Exit door,	
	Lec 36	Refuge area, Safe area & other related as per	
		standard	
		Installation & maintenance as per relevant	
		national and international standards	
		national and international standards	

13	Lec 37	The process of fire risk assessment	
	Lec 38	Fire risk assessment recording and review	
	Lec 39	procedures	
		The potential for pollution arising from fires,	
		Measures to prevent and reduce fire pollution	
14	Lec 40	Prevention of failure, fire prevention	
		Measures	
	Lec 41	Review Class 1	
	Lec 42	Review Class 2	

(PR – Project; ASG – Assignment; PR – Presentation; R - Report; F – Final Exam)

Linkage of Course Outcomes with Assessment Methods and their Weights:

Asses	Assessment Strate		CO	Dla ana's Toward and
Components		Grading	CO	Bloom's Taxonomy
			CO 1	C1, C2
	Test 1, 2	20%	CO 3	C2
			CO 4	C1-C3
Continuous	Class		CO 1	C1, C2
Assessment (40%)	Participa tion	5%	CO 2	C2
	Mid term		CO 1	C1, C2
		1 15%	CO 2	C2
			CO 4	C1-C3
			CO 1	C1, C2
			CO 2	C2, C3
Final Exam		60%	CO 3	C2
			CO 4	C1-C3
			CO 5	C1, C2
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

1. Principles of Fire Safety Engineering and Management-(Understanding Fire & Fire Protection)- by A.K. Das, First edition, 2014.

- 2. Handbook of Fire Technology- by R.S. Gupta
- 3. Industrial Fire Protection- R. Craig Schroll

Reference Site:

<u>https://classroom.google.com/</u> (To be announced)

Course Code: IPE 451 Course Name: Micromanufacturing

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-4, T-2

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: None

Synopsis/Rationale:

This course covers applications and various microfabrication methods to design and fabricate MEMS devices. Methods include, patterning based on photolithography, deposition, etching (wet & dry), nanofabrication technologies, next-generation fabrication technologies, and the physics behind them.

Objectives:

- 4. To acquire the baseline knowledge about the theory and methods of various microfabrication techniques based on photolithography, and the ability to apply for developing the MEMS devices.
- 5. To design the basic level of MEMS devices.

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Learn and understand the operation of micro devices, micro systems and their applications	C1			1	T, Mid Term Exam, F
CO2	Study and design the micro devices, micro systems using the MEMS fabrication process	C1-C6	1,7	1,3	1, 4-6	ASG, Mid Term Exam, F
CO3	Learn, understand and apply of basic approaches for various sensor and actuator design	C1-C3	1	1,3	1,4 ,5	T, ASG, F
CO4	Develop experience on micro-systems for photonics	C1,C2			1	T, Mid Term Exam, ASG, R, F
CO5	Obtain technical knowledge required for computer-aided design, fabrication, analysis and characterization of micro-structured materials, micro-scale devices	C1,C2	1		1	ASG, PR, R, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

Course Contents:

Fundamental of micro and nano technology, Micro elements: design and fabrication; Basics of micro-fabrication technology: thin film growth and deposition, photolithography, X-ray lithography, wet and dry chemical etching, Nano machining and Finishing, Concepts of micro forming and welding, micromachining, electrochemical machining, ultrasonic machining, plasma machining and laser machining.

Mapping of Course Outcomes and Program Outcomes:

					Pr	ogra	m Oı	ıtcome	es (PC	O)			
No.	Course Outcomes (CO) of the Course	Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Project Management and Finance	Life Long Learning
		1	2	3	4	5	6	7	8	9	10	11	12

CO1	Understand the operation of micro devices, micro systems and their applications	V							
CO2	Study and design the micro devices, micro systems using the MEMS fabrication process	V		V	√			V	
CO3	Learn, understand and apply of basic approaches for various sensor and actuator design	V	V	V	√			V	
CO4	Develop experience on micro-systems for photonics	V							
CO5	Obtain technical knowledge required for computer-aided design, fabrication, analysis and characterization of micro-structured materials, micro-scale devices	V							

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	40
Revision	20
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	127

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Visualization using Computer Simulations, Assignments, Class Tests, Exams, Feedback at every step.

Lecture Schedule:

Week	Lecture	Topics	ASSESSMENT
1	Lec 1	Fundamental of micro and nano technology, Micro-	
	Lec 2	fabrication, concepts of micro and Microsystems	
	Lec 3	Products, Microsystems and Microelectronics,	
		Application of Microsystems, Standardization and	
2	T 4	Commercialization Issues of Micro-Nano Systems	Class Test 1, ASG,
2	Lec 4	Introduction to MEMS	F
	Lec 5	Basic design and fabrication techniques of	
	I (MEMs	
	Lec 6	Micro sensors, micro/nano biosensors:	
		Classification of physical sensors	
3	Lec 7	Integrated, Intelligent or Smart sensors, Bio	
		sensing Principles and sensing methods	
	Lec 8	Biosensors arrays and Implantable devices	
		Innovative Applications on Present Devices:	
	Lec 9	Nano chips, Nanotubes and Nanowires,	
		Integration of chips and microprocessors	
4	Lec 10	Introduction to Micro actuation	
	Lec 11	MEMS with Micro actuators	
	Lec 12	Micro actuators with mechanical Inertia –	
		Micro fluidics	
5	Lec 13	Basics of micro-fabrication technology	
	Lec 14	Thin film growth and deposition	Class Test 2, ASG,
	Lec 15	Sputtering	PR, F
6	Lec 16	Fundamentals on Deposition techniques	1 IX, I'
	Lec 17	Atomic Layer Deposition I	
	Lec 18	Atomic Layer Deposition II	
7	Lec 19	Chemical Vapour Deposition I	
	Lec 20	Chemical Vapour Deposition II	
	Lec 21	Thermal evaporation	

_		T	
8	Lec 22	Ultra Sonic Micro Machining, Abrasive Water	
	Lec 23	Jet Micro Machining – Tool based Micro-	
	Lec 24	machining, Chemical and Electro Chemical	
		Micro Machining – Electric Discharge Micro	
		machining. Electron and Laser Beam Micro	
		Machining, Hybrid Micro machining, Electro	
		Chemical Discharge micro machining,	
		Machining of Micro gear, micro nozzle, micro	
		pins and its applications. Tool based	
		micromachining (TBMM)	Mid Term, F
9	Lec 25	Nano machining and Finishing	
	Lec 26	Plasma Beam Machining	
	Lec 27	electrochemical machining	
10	Lec 31	Abrasive Flow finishing	
	Lec 32	Magnetic Float polishing	
	Lec 33	Elastic Emission Machining	
11	Lec 28	Chemo-Mechanical Polishing	
	Lec 29	Magnetic Abrasive Finishing	
	Lec 30	Focused Ion Beam Machining	
12	Lec 34	Concepts of micro forming and welding	
	Lec 35	Micro extrusion	
	Lec 36	Roller Imprinting	Class Test 3, ASG,
13	Lec 37	Micro bending and micro welding with LASER	R, PR, F
	Lec 38	Electron beam for micro welding	K, I K, I
	Lec 39	Metrology for micro machined components.	
14	Lec 40	Micro and Nano structured surface	
		development by Nano plastic forming	
	Lec 41	Review Class 1	
	Lec 42	Review Class 2	

(PR – Project; ASG – Assignment; PR – Presentation; R - Report; F – Final Exam)

Linkage of Course Outcomes with Assessment Methods and their Weights:

Asses	sment Strate	egies	СО	Dlaam'a Tayanamy
Components	Components		CO	Bloom's Taxonomy
			CO 1	C1
	Test 1, 2	20%	CO 3	C1-C3
			CO 4	C1,C2
Continuous	Class		CO 2	C1-C6
Assessment	Participa	5%	CO 3	C1-C3
(40%)	tion		CO 4	C1,C2
	Ma		CO 1	C1
	Mid	15%	CO 2	C1-C6
	term		CO 4	C1,C2

		CO 1	C1
		CO 2	C1-C6
Final Exam	60%	CO 3	C1-C3
		CO 4	C1,C2
		CO 5	C1,C2
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

- 1. Advanced Machining Process Hassan El-hofy
- 2. Non traditional machining process Golam Kibria

Reference Site:

https://classroom.google.com/ (To be announced)

Course Name: Production Planning and Control

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-4, T-2

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites:

1. IPE 107: Engineering Economy

2. IPE 205: Probability and Statistics

3. IPE 305: Operations Research

4. IPE 311: Operations Management

Synopsis/Rationale:

The course covers production planning and scheduling systems. The emphasis of the course is on implementing effective production planning and scheduling systems to industrial applications. Heavy emphasis is placed on developing mathematical models such as linear programming for solving manufacturing related scheduling problems.

Objectives:

- 1. To provide students with the basic concepts related to the operations management systems and their impact on production and inventory control system design.
- 2. To provide students with methodology and models for the generation of company forecasts, materials management cost elements, business operations analysis, productivity,

- operations strategies for competitive advantage, location strategies, and supply-chain management.
- 3. To provide students with information on the design and management of operations and production planning/control systems including capacity planning, materials requirements planning, inventory models, scheduling and sequencing, and line balancing for various aspects of the manufacturing and service industry.

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Analyze operations performance measurements and analysis for continuous improvement.	C1-C4	2	2	1	T, Exam, F
CO2	Apply and analyze forecasting models to develop business enterprise forecasts for product demand, profits, sales, material requirements, capacity requirements, etc	C1-C5	2	2	1	ASG, Mid Term Exam, F
CO3	Develop and analyze production and inventory planning/control systems, and scheduling techniques by using engineering techniques for a complete production facility	C2-C4,C6	2	2	2	ASG, Mid Term, F
CO 4	Design, develop, and analyze a Master Production Schedule and a resultant Materials Requirement Plan (MRP) for a complete production facility.	C2-C6				F, ASG

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; PR-Project; PR-Pro

Course Contents:

Introduction: Overview, and Reasons for Production Planning and Scheduling

Forecasting: Regression, Moving Average, and Exponential Smoothing Techniques, Aggregate Production, Graphical Models, Linear Models, Disaggregation

Master Production Scheduling and Capacity Planning: Inventory Modeling, Cost Components and Terminology, ABC Analysis, Economic Order Quantity and Economic Production Quantity, Dynamic Lot Sizing Techniques, Safety Stock Analysis

Material Requirements Planning: Factory Floor Scheduling , Definitions and Performance Measures, Gantt Charts, Single Machine Scheduling, Flowshop Scheduling

Jobshop Scheduling: Dispatching Rules: SPT, EDD, SLACK, SLACK/OPN, FCFS, RANDOM, Release Rules: Workload Regulating, Starvation Avoidance

Integrated Production Planning and Control: Just-in-time, KANBAN, Push Systems, Pull Systems, and Theory of Constraints

Mapping of Course Outcomes and Program Outcomes:

No.	Course Outcomes (CO) of the			P	rog	ram	Ou	tcoı	nes	(PC))		
110.	Course	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Analyze operations performance measurements and analysis for	V	V	V	V	٦/						V	J
	continuous improvement.	•	V	V	V	V						•	V
CO2	Apply and analyze forecasting models to develop business enterprise forecasts for product demand, profits, sales, material requirements, capacity requirements, etc	V	V			V					√	V	V
CO3	Develop and analyze production and inventory planning/control systems, and scheduling techniques by using engineering techniques for a complete production facility	√	V	V	√	√				√	√	√	√
CO4	Design , develop , and analyze a Master Production Schedule and a resultant Materials Requirement Plan (MRP) for a complete production facility.	√	V	V	√	V				V	V	V	V

(H – High, M- Medium, L-low)

Teaching-learning and Assessment Strategy:

	OV	-
Teaching and Learning Activities		Engagement (hours)
Face-to-Face Learning		
Lecture		42

Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	18
Revision	21
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	106

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Assignments, Class Tests, Exams, Feedback at every step.

Lecture Schedule:

Week	Lecture	Topics	TEST
1	Lec 1	Introduction and Overview	
	Lec 2	Reasons for Production Planning and	
		Scheduling	
	Lec 3	Forecasting	
2	Lec 4	Regression	
	Lec 5	Moving Average, and	
	Lec 6	Exponential Smoothing Techniques	
3	Lec 7	Exponential Smoothing Techniques (contd.)	ASG, Class Test 1
	Lec 8	Aggregate Production Planning	
	Lec 9	Graphical Model	
4	Lec 10	Linear Models	
	Lec 11	Chemical Processing Paper	
	Lec 12	Disaggregation	
5	Lec 13	Master Production Scheduling and	
		Capacity Planning	
	Lec 14	Inventory Modeling	ASG, Class Test 2
	Lec 15	Cost Components and Terminology	
6	Lec 16	Cost Components and Terminology	
	Lec 17	ABC Analysis	
	Lec 18	ABC Analysis]
7	Lec 19	Economic Order Quantity and	

			1
	Lec 20	Economic Production Quantity	
	Lec 21	Dynamic Lot Sizing Techniques	
8	Lec 22	Safety Stock Analysis	
	Lec 23	Material Requirements Planning	
	Lec 24	Factory Floor Scheduling	
9	Lec 25	Definitions and Performance Measures	Mid Term
	Lec 26	Gantt Charts	Wild Term
	Lec 27	Single Machine Scheduling	
10	Lec 28	Flowshop Scheduling	
	Lec 29	Jobshop Scheduling	
	Lec 30	Dispatching Rules: SPT, EDD, SLACK,	
		SLACK/OPN, FCFS, RANDOM	
11	Lec 31	Release Rules: Workload Regulating,	
	Lec 32	Starvation Avoidance	
	Lec 33	Integrated Production Planning and Control	ASG, Class Test 3
12	Lec 34	Just-in-time	ASG, Class Test 5
	Lec 35	Channel management and retailing	
	Lec 36	KANBAN	
13	Lec 37	Push Systems	
	Lec 38	Pull Systems	
	Lec 39	Theory of Constraints	ASG,F
14	Lec 40	Review	
	Lec 41		
	Lec 42		

 $(PR-Project\ ;\ ASG-Assignment;\ PR-Presentation;\ R-Report;\ F-Final\ Exam)$

Linkage of Course Outcomes with Assessment Methods and their Weights:

Сотр	oonents	Grading	СО	Bloom's Taxonomy
Continuou s	Class test 1-	200/	CO 1	C1-C3
Assessmen t (40%)	3	20%	CO 2	C4, P4
			CO 3	P4, C1,C4

	Class Participatio	5%	CO 1	C1-C3, A2
	n	270	CO 2	C4, P4
	Mid term	15%	CO 1	C1-C3
			CO 2	C4, P4
			CO 1	C1-C3
Final	Exam	60%	CO 2	C4, P4
			CO 3	P4, C1, C4
			CO 4	C3-C6
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

1. Manufacturing Planning and Control Systems for Supply Chain Management, Vollman, Berry, Whybark, and Jacobs, McGraw-Hill, 6th Edition, 2011

Reference Site:

https://classroom.google.com/ (To be announced)

Course Code: IPE 447 Course Name: Advanced Material and Process

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-4, T-2

Curriculum Structure: Outcome Based Education (OBE) **Pre-requisites:** (1) IPE 105: Engineering Materials

Synopsis/Rationale:

This Outcome Based Education (OBE) based course is designed to conduct in depth study on super alloys, composites, biodegradable plastics, ceramic materials, various properties of advanced engineering materials and methods of heat and surface treatments with the objective of laying a strong foundation for core manufacturing courses of program.

Objectives:

- i. To conduct study on super alloys.
- ii. To expose students to various composite materials.
- iii. To conduct study on powder metallurgy and particulate materials.
- iv. To conduct study on biodegradable plastics.
- v. To expose students to electronic materials.
- vi. To conduct study on smart materials.
- vii. To apply advanced concepts of engineering materials to the analysis, design and development of materials, components, or processes to meet desired needs of material processing and working condition.

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO 1	Explain properties and processing of super alloys.	C1-C4	1		1	T, Mid Term Exam, F
CO 2	Outline the properties of various composites and their processing methods.	C1-C4	1		1	T, Mid Term Exam, F
CO 3	Explain fundamentals of ceramic processing.	C3, C4	2	1	2	T, Mid Term Exam, F
CO 4	Explain the structure and application of smart materials.	C2-C4			1	T, Mid Term Exam, F
CO 5	Describe the application of biodegradable plastics.	C2-C4	1			T, Mid Term Exam, F
CO 6	Outline the properties of electronic materials and their application.	C2			1	T, Mid Term Exam, F
CO 7	Describe the fundamentals of powder metallurgy and particulate materials.	A3	1		1	T, Mid Term Exam, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; PR-Project; PR-Pro

Course Contents:

Super alloys; Metal matrix composites, Ceramic matrix composites, other composites;

Polymers; Biodegradable plastics: Ceramics: Electronic materials. Powder metallurgy and particulate materials. Smart Materials.

Mapping of Course Outcomes and Program Outcomes:

Course Learning Outcomes				Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and	Ethics	Communication	Individual and Team Work	Project Management and	Life Long Learning
		P01	PO2	P03	P04	P05	P06	PO7	P08	P09	PO10	P011	PO12
CO1	Explain properties and processing of super alloys.	√	1										
CO2	Outline the properties of various composites and their processing methods.	√	1	V									
CO3	Explain fundamentals of ceramic processing.	√											
CO4	Explain the structure and application of smart materials.	√	√										
CO5	Describe the application of biodegradable plastics.	√	1										
CO6	Outline the properties of electronic materials and their application.	√	√										
CO7	Describe the fundamentals of powder metallurgy and particulate materials.	√											

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	40
Revision	20
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	127

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Assignments, Class Tests, Exams, Feedback at every step.

Lecture Schedule:

Week/class	Topics	Assessment				
Week 1	Introduction to superalloys					
Class 1	Introduction to materials for high-temperature applications					
Class 2	Physical metallurgy of superalloys					
Class 3	High temperature mechanical properties of superalloys	CT, ASG				
Week 2	Application and processing of super alloys					
Class 4	Processing and manufacturing of superalloys					
Class 5	Failure analysis of superalloys					
Class 6	Future trends in structural alloy design and development					
Week 3	Introduction to composite materials					
Class 7	Classification and properties of composite materials					

Class 8	Reinforcement and manufacturing of composite materials]
Class 9	Processing of metal matrix composites	-
Week 4	composite materials	
Class 10	properties and application of metal matrix composites	-
Class 11	processing of ceramic matrix composites.	
Class 12	Properties and application of ceramic matrix composites.	-
Week 5	biodegradable plastics	-
Class 13	Introduction to biodegradable plastics	CT, ASG
Class 14	Rationale for biodegradable plastics - the biological carbon cycle	21,7100
Class 15	Composting biodegradable plastics	-
Week 6	biodegradable plastics	-
Class 16	Design & engineering of biodegradable plastics	
Class 17	Polyester based and natural polymer based biodegradable plastics	
Class 18	Markets and business opportunities	
Week 7	Ceramics	
Class 19	Ceramic Raw Materials and their processing	-
Class 20	Ceramic forming: dry forming and wet forming processes	-
Class 21	Firing of ceramics	
Week 8	Ceramics (contd.)	1
Class 22	Statics and Kinetics of Firing, Kiln Design and Operation. Specialised Sintering Processes.	Mid, ASG
Class 23	Glass Making Technology: Glass Compositions & Structure; Glazes & Enamels.	
Class 24	Cement and Concrete Processing	
Week 9	Electronic materials	
Class 25	Overview of electronic materials	
Class 26	Integrated circuit, PWB	
Class 27	Solid state structure	
Week 10	Electronic materials (contd.)	
Class 28	Electrical and thermal properties	
Class 29	Optical and magnetic properties	

Class 30	Applications	
Week 11	Powder metallurgy and particulate materials	
Class 31	Steps in Making Powder-Metallurgy Parts, Powder particles, Atomization	
Class 32	Mechanical alloying, Bowl Geometries in Blending Metal Powders, Density Variation in Compacting Metal Powders	
Class 33	Press for Compacting Metal Powder, Powder Rolling	
Week 12	Powder metallurgy and particulate materials	
Class 34	Spray Deposition, Mechanisms for Sintering Metal Powders, Design Considerations for P/M	
Class 35	Characteristics of Ceramics Processing, Dry or semi-dry pressing, hydroplastic forming, Slip casting, doctor blade process	CT, ASG, F
Class 36	Extruding and Jiggering, Float method, Glass tubing and manufacturing	
Week 13	Smart materials	
Class 37	Introduction to smart materials	
Class 38	State-of-the-Art in Smart Materials & Structures (SM&S) Development	
Class 39	Shape Memory Alloy Materials and Actuators: control design, Designing with MR Fluids	
Week 14	Smart materials (contd.)	
Class 40	Smart Rubber, Fiber Optic Sensors, MEMS	
Class 41	Piezoceramics and Finite Element Modeling of Piezoceramic Smart Structure, Health Monitoring using Smart Materials	
Class 42	Review	

 $(PR-Project\ ;\ ASG-Assignment;\ PR-Presentation;\ R-Report;\ F-Final\ Exam)$

Linkage of Course Outcomes with Assessment Methods and their Weights:

Assessment Strategies			CO	Dloom's Toyonomy		
Components		Grading	CO	Bloom's Taxonomy		
	Test 1-3	20%	CO 1	C1-C4		
	16811-3	20%	CO 3	C2-C4		
			CO 4	C2		
	Class		CO 2	C3, C4		
Continuous Assessment	Participa tion	5%	CO 5	A3		
(40%)	Mid		CO 1	C1-C4		
	Mid		CO 2	C3, C4		

	term	15%	CO 3	C2-C4
			CO 1	C1-C4
Einel Even		600/	CO 2	C3, C4
Final Exam		60%	CO 3	C2-C4
			CO 4	C2
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

- 1. William D. Callister, *Materials Science and Engineering an Introduction*, John Wily, 5th Edition.
- 2. Sidney H Avner, *Introduction to Physical Metallurgy*, Tata Mc Graw Hill Edition, 2nd edition..
- 3. Ashby, M. F.; Jones, D. R. H., *Engineering materials 1: an introduction to properties, applications and design*. Elsevier: 2012; Vol. 1.
- 4. Kakani, S., Material science. New Age International: 2006.
- 5. Smallman, R. E.; Ngan, A., *Physical metallurgy and advanced materials*. Elsevier: 2011.

COURSE INF	FORMATION							
Course Code	: CSE 403	Lecture Contact urs	: 3.00					
Course Title	: Artificial Intelligence	Credit Hours	: 3.00					
DDE DECLIE	DDE DECLICITE							

PRE-REQUISITE

Course Code: Nil

Course Title: Nil

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

Artificial intelligence is the beginning of revolution for rational behaviour of intelligent agents along with knowledge perception, representation, planning, reasoning, learning and understanding ideas to solve real life complex situations.

OBJECTIVE

- 1. To discuss and distinguish the notions of rational behaviour and intelligent agents.
- 2. To develop a general appreciation of the goals, subareas, achievements and difficulties of AI.
- 3. To have knowledge of methods of blind as well as informed search in case of knowledge representation, planning, learning, robotics and other AI areas and ability to practically apply the corresponding techniques.

LEARNING OUTCOMES& GENERIC SKILLS

No. Course Learning Outcome (Upon completion of the course, the students will be able to) CO Remembering and understanding the notions of rational behaviour, goals, subareas, achievements and difficulties of AI agents. CO Able to apply problem solving methods (informed, uninformed, local search, adversarial search and CSP) of single or multi agents to solve real life problems. CO Able to apply major concepts and approaches of knowledge representation, planning and learning for improving machine intelligence. CO Able to develop the communication skill by presenting topics on Artificial Intelligent. Bloom's Taxono my CP CA KP Assessmen t Methods C1, C2 1 1 T C2, C6 3 5, 6 T, MT, F							
rational behaviour, goals, subareas, achievements and difficulties of AI agents. C1, C2	No.	(Upon completion of the course, the students	Taxono	СР	CA	KP	
CO (informed, uninformed, local search, adversarial search and CSP) of single or multi agents to solve real life problems. CO Able to apply major concepts and approaches of knowledge representation, planning and learning for improving machine intelligence. CO Able to develop the communication skill by A2 1 Pr		rational behaviour, goals, subareas,	C1, C2	1		1	Т
of knowledge representation, planning and learning for improving machine intelligence. CO Able to develop the communication skill by A2 1 Pr		(informed, uninformed, local search, adversarial search and CSP) of single or multi	C2, C6	3		5, 6	T, MT, F
I I AZ I II PT		of knowledge representation, planning and	C6, P3	2, 7		5, 8	T, MT, F
		_	A2		1		Pr

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile,T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)

COURSE CONTENT

Introduction: Overview of AI and intelligent agents; **Problem Solving:** Review of Uninformed Search Strategies and game playing; Informed search Strategies: A*, Heuristic functions, Memory Bounded Search (IDA*, SMA*), Iterative improvement Search, adversarial search, local search Constraint satisfaction problems; **Knowledge representation:** Review of Propositional logic, first order Logic, **Planning:** Introduction to Planning, Partial Order Planning; **Reasoning:** Bayesian Rule and its use in probabilistic reasoning; **Learning:** Belief Networks and Decision Networks; Learning Decision Trees; Learning General Logical descriptions-Hypothesis. Introduction to Natural Language Processing.

Course Outcomes:

		PROGRAM OUTCOMES (PO)											
No.	Course Learning Outcome		2	3	4	5	6	7	8	9	1 0	1 1	12
CO1	Remembering and understanding the notions of rational behaviour, goals, subareas, achievements and difficulties of AI agents.	√											
CO2	Able to apply problem solving methods (informed, uninformed, local search, adversarial search and CSP) of single or multi agents to solve real life problems.			V									
CO3	Able to apply major concepts and approaches of knowledge representation, planning and learning for improving machine intelligence.			1									
CO4	Able to develop the communication skill by presenting topics on Artificial Intelligent.										V		

JUSTIFIC	ATION FO	OR CO-PO MAPPING
Mapping	Level	Justifications
CO1-PO1	High	As graduates will have to acquire knowledge on different types of agent architecture and working procedure.
CO2-PO3	High	As the graduates will have to design solutions for real life engineering problems which can be solved by agent using different search techniques that meet specified needs with appropriate consideration.
CO3-PO3	High	As the graduates will have to design solutions for real life engineering problems which can be solved by agent which is capable of representing

		I									
		knowledge, reasoning information, able to plan and le	earn in different								
		scenario along with appropriate consideration.									
CO4-	_	By presenting on different recent innovation of artifi	cial intelligent								
PO10	Low	embedded machine, graduates will have improved co	_								
		NING STRATEGY									
Teaching a	nd Learnin	g Activities	Engagement (hours)								
Face-to-Fac	ce Learning										
Lec	eture		42								
Pra	ctical / Tut	orial / Studio	-								
Stu	dent-Centr	ed Learning	-								
Self-Directed Learning											
Noi	42										
Rev	Revision										
Ass	sessment Pr	reparations	21								
Formal Ass	sessment										
Cor	ntinuous A	ssessment	2								
Fin	al Examina	ntion	3								
Total			131								
TEACHIN	IG METH	ODOLOGY									
Lactura and	d Discussio	on, Co-operative and Collaborative Method, Problem Ba	osad Mathod								
Lecture and	ı Discussic	ni, co-operative and conaborative Method, i roblem Be	asea Memoa								

COURSE SCHEDULE

Week	Lecture	Topics	Assessment Methods
	Lec 1	Introduction to AI	
1.	Lec 2	Agent Architecture	
	Lec 3	Solving Problems by Searching	
2	Lec 1	Uninformed Search I	
2.	Lec 2, 3	Uninformed Search II	Class Test -
2	Lec 1	Informed Search I	
3.	Lec 2, 3	Informed Search II	
_	Lec 1	Memory Bounded Search I	-
4.	Lec 2, 3	Memory Bounded Search II	
_	Lec 1	Beyond Classical Search I	
5.	Lec 2, 3	Beyond Classical Search II	
	Lec 1	Adversarial Search I	
6.	Lec 2, 3	Adversarial Search II	
7	Lec 1	Constraint Satisfaction Problems I	Class Test -
7.	Lec 2, 3	Constraint Satisfaction Problems II	2
	Lec 1	Planning with State Space Search	1
8.	Lec 2	Planning with Partial Order Search	
Lec 3 Graph Search		Graph Search	
9.	Lec 1	Uncertainty and Probabilities	

Lec 2	Propositional Logic	
Lec 3	First Oder Logic	
Lec 1-3	Second Oder Logic	
Lec 1	Bayesian Rule	Mid Term
Lec 2	Probabilistic reasoning	Exam
Lec 3	Bayes Net	
Lagit	Naive Bayes	
	Belief Networks	
Lec 2	Decision Networks	
Lec 1	Perceptions	
Lec 2	Kernels and Clustering	Class Test-3
Lec 1-3	Learning General Logical descriptions- Hypothesis. Introduction to Natural Language Processing.	
	Lec 3 Lec 1-3 Lec 1 Lec 2 Lec 3 Lec 1 Lec 2 Lec 2 Lec 2	Lec 3 First Oder Logic Lec 1-3 Second Oder Logic Lec 1 Bayesian Rule Lec 2 Probabilistic reasoning Lec 3 Bayes Net Naive Bayes Lec 1 Belief Networks Decision Networks Lec 1 Perceptions Lec 2 Kernels and Clustering Lec 1-3 Hypothesis. Introduction to Natural Language

ASSESSMENT STRATEGY

Components Grading		СО	Blooms Taxonomy	
Continuo	Test 1-3	20%	CO1	C1, C2
us			CO2	C2, C6

Assessme nt (40%)			CO3	C6, P3
11 (10/0)	Class Participati on	5%	CO4	A2
	Mid term	15%	CO2	C2, C6
			CO3	C6, P3
Final	Final Exam		CO2	C2, C6
			CO3	C6, P3
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Artificial Intelligence: A Modern Approach (4th Edition) Stuart Jonathan Russell, Peter Norvig; Prentice Hall (2020)
- 2. Artificial Intelligence: A New synthesis Nils J. Nilsson; Routledge

REFERENCE SITE

Google Classroom

CHAPTER 6

DESCRIPTION OF THE BASIC SCIENCE, MATHEMATICS, LANGUAGE, AND GENERAL EDUCATION COURSES

6.1 Detailed Curriculum of Basic Science Courses

COURSE INFORMATION

Course : PHY 133 Lecture Contact : 3.00

Code Hours

Course : Waves and Oscillations, Credit Hours : 3.00

Title Structure of Matter, Heat and

Thermodynamics

PRE-REQUISITE

N/A

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course covers the basics of physics in the fields of waves and oscillations, structure of matter, heat and thermodynamics. The course will emphasize the basic concepts, theories, and solving quantitative problems that can be applicable in a wide spectrum of engineering disciplines.

OBJECTIVE

- 1. To define the different parameters, concepts, logical and critical thinking with scientific knowledge of waves and oscillations, structure of matter, heat and thermodynamics.
- 2. To explain the basic theories and laws of waves and oscillations, structure of matter, heat and thermodynamics.
- 3. To solve numerical and analytical problems regarding waves and oscillations, structure of matter, heat and thermodynamics.

LEAR	LEARNING OUTCOMES & GENERIC SKILLS												
No.	Course Outcomes	Corresp	Bloom's	СР	CA	KP	Assess						
	At the end of the course, a student should be able to	onding POs	Taxonom Y				ment Method s						

CO1	Define different base	i a									
	laws and parameters the field of waves and oscillations, structure of matter, heat and thermodynamics such a simple harmonic motion damped oscillations crystal structure crystal defects thermometer, thermodynamics laws entropy etc. etc.	in nd re nd as n, PO1 s, e, s,	C1	_	_	1	T, MT, F				
CO2	theories in the field of waves and oscillations structure of matter, her and thermodynamics sugas the SHM, damped motion, wave motion Bragg's law, bonding energy, kinetic theory of gases, Carnot cycle thermodynamic function etc.	of s, at ch ed pol n, ng of e,	C2	_		1	T, MT, F				
CO3	problems in the field of waves and oscillations structure of matter, her and thermodynamics such as SHM, damped motion wave motion, packing factor, Miller indices heat and thermodynamic etc.	of s, at ch pO1 ng s, cs	C3	-	_	2	T, ASG, MT, F				
Prof Pres	(CP - Complex Problems, CA - Complex Activities, KP - Knowledge Profile, T - Test, PR - Project, Q - Quiz, ASG - Assignment, Pr - Presentation, R - Report, CS - Case study, MT- Mid Term Exam, F - Final Exam)										
C1 - F	C1 - Remember C2 - Understand C3 - Apply C4 - Analyze C5 - Evaluate C6 - Create										
COUR	SE CONTENT			•							

Waves and Oscillations: Simple Harmonic Motion (SHM) and its properties, differential equation of a SHM and its solution, total energy and average energy of a body executing SHM, simple pendulum, torsional pendulum, spring-mass system, LC oscillatory circuit, two body oscillation and reduced mass, Composition of SHM, Damped oscillations, and its different condition, forced oscillations and its different condition, resonance, Wave motion: expression for a plane progressive wave, differential equation of wave motion, energy density of wave motion, average kinetic and potential energy of wave motion, Stationary wave.

Structure of matter: Crystalline and non-crystalline solids, single crystal and poly-crystal solids, unit cell, crystal systems, co-ordinations number, crystal planes and directions, NaCl and CsCl structure, packing factor, Miller indices, relation between interplanar spacing and Miller indices, Bragg's law, methods of determination of inter-planar spacing from diffraction patterns; defects in solids: point defects, line defects, surface defects, bonds in solids, band theory of solids: distinction between metal, semiconductor and insulator, inter-atomic distances, calculation of cohesive and bonding energy.

Heat and Thermodynamics: Platinum resistance and thermo-electric thermometer, Calorimetry: Newton's law of cooling, specific heat, C_p , C_v , relation between C_p & C_v , different process, Kinetic theory of gases, pressure equation, RMS speed, Kinetic interpretation of temperature, degrees of freedom, equipartition of energy, mean free path, Laws of thermodynamics, zeroth law, first law of thermodynamics, thermodynamic equilibrium, PV diagram, Carnot Cycle, entropy, calculation of change in entropy, entropy and the second law of thermodynamics, reversible and irreversible process, temperature entropy diagram, Maxwell's thermodynamic relations, Clausius Clapeyron equation, thermodynamic function.

CO-PC	CO-PO MAPPING												
No.	Course Outcome			I	PRO	GRA	MA	OU	CON	1ES	(PO))	
NO.	Course ouccome		2	3	4	5	6	7	∞	9	10	11	12
CO1	Be able to Define different basic parameters in the field of waves and oscillations, structure of matter, heat and thermodynamics such as periodic motion, simple harmonic motion, undamped oscillations, crystal structure, crystal defects, heat, entropy, Carnot's cycle etc.	V											

CO2	Be capable to Explain different basic theories in the field of waves and oscillations, structure of matter, heat and thermodynamics such as the wave motion for different systems along with energy, packing factor, Bragg's law, thermodynamics laws, entropy, etc.						
CO3	Be skilled to Solve quantitative problems in the field of waves and oscillations, structure of matter, heat and thermodynamics such as energy of wave motion, wavelength, packing factor, Miller indices, thermodynamics laws, Carnot's cycle, entropy, etc.	V					

TEACHING LEARNING STRATEGY				
Teaching and Learning Activities	Engagement	(hours)		
Face-to-Face Learning				
Lecture	42			
Practical / Tutorial / Studio	_			
Student-Centered Learning	_			
Self-Directed Learning				
Non-face-to-face learning	42			
Revision of the previous lecture at home	21			
Preparation for test and examination	21			
Formal Assessment				
Class Test / Mid-Term Exam	3			
Final Examination	3			
Total	132			

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Week	Lect	Topics	Remarks
Week -1	1	Introductory class: Brief discussion on total syllabus, basic requirements of the course, assessment of the course	CT-1/ Assignm
	2	Periodic motion, oscillatory motion, simple harmonic motion (SHM), properties of SHM, differential equations, general solution of SHM, graphical representation of SHM	
	3	Velocity, acceleration, phase and epoch, time period, frequency and angular frequency of SHM	
Week -2	4	Total energy and average energy of SHM, problems	ent
	5	Simple pendulum, torsional pendulum, spring-mass system	
	6	LC oscillatory circuit, two body oscillations, reduced mass	
	7	Composition of SHM	
Week _	8	Composition of SHM, problems	
	9	Damped oscillations and its differential equation	
Week -4	10	Displacement equation of damped oscillations and its different conditions, electric damped oscillatory circuit	
	11	Forced oscillations and its differential equation, displacement equation of forced oscillations, resonance	
	12	Wave motion: expression for a plane progressive wave, differential equation of wave motion, particle velocity, wave velocity	
Week _	13	Energy density of a plane progressive wave, average energy in a plane progressive wave, problems	
	14	Stationary wave : node, anti-node, problems	CT-2
	15	Classification of solids, types of crystalline solids, crystal, lattice, basis, crystal structure, plane lattice, space lattice, Bravais and non-Bravais lattices	/Assign ment
Week -6	16	Unit cell, lattice parameters, primitive and non-primitive cells and their distinctions, lattice symbols, crystal structure of NaCl and CsCl	
	17	Unit face, axial units: linear and numerical parameters and, Miller indices	
	18	Atomic radius, packing factor and coordination number for different structures	

	19	Relation between lattice constant and density of solids and related numerical problems	
Week	20	Inter-planer spacing, relation between inter-planar spacing and Miller indices, problems	
<i>-</i> /	21	X-ray diffraction, Bragg's law, methods of determination of inter-planar spacing from diffraction patterns, problems	
Week	22	Defects in solids: point defects, line defects, surface defects	
-8	23	Defects in solids: point defects, line defects, surface defects	
	24	Atomic arrangement in solid: different types of bonds in solids	Mid
	25	Band theory of solids: valence band, conduction band, energy gap, distinction between metal, semiconductor and insulator	Term/ Assignm
Week	26	Potential, cohesive energy, binding energy, Madelung constant, inter-atomic distance, calculation of total potential energy of a pair of atoms	ent
	27	Calculation of total potential energy at the equilibrium separation of an ionic crystal, problems	
	28	Introduction of thermometry : Platinum resistance thermometer	
Week -10	29	Thermocouple: See-beck effect, neutral temperature and temperature of inversion of a thermocouple,	
	30	Thermo-electric thermometer	1
,	31	Calorimetry: Newton's law of cooling, specific heat of gases, isothermal change, adiabatic change; isochoric and isobaric processes	
Week	32	C_p , C_v , relation between C_p and C_v , problems	1
-11	33	Adiabatic equation of a perfect gas, adiabatic and isothermal curves, work done during expansion or compression of a gas, problems	
Week	34	Postulates of kinetic theory of gases, expression for pressure exerted by a gas, kinetic interpretation of temperature	CT-3 / Assignm ent
-12	35	RMS speed, degrees of freedom of a gas, principle of equipartition of energy, ratio of specific heats of gases (γ)	
	36	Mean free path, problems	1
Week -13	37	Laws of thermodynamics, thermodynamic equilibrium, reversible and irreversible process, heat engine P-V diagram, efficiency of heat engines, Carnot's cycle	

	38	Efficiency of Carnot engine, refrigerator, 2 nd law of thermodynamics, Carnot's theorem, problems
	39	Entropy: properties of entropy, change in entropy for a reversible & irreversible process
	40	Calculation of entropy change in reversible process: when heated at constant volume, constant pressure, isothermal expansion and general manner, Problems
Week -14	41	Thermodynamic relations : Maxwell's thermodynamic relations : one to sixth relation
-14	42	Thermodynamic function: Internal energy (U), Helmholtz free energy function (F) or free energy, Significance of free energy, Gibbs' free energy function (G), Enthalpy (H), Clausius and Clapeyron equation

ASSESSMENT STRATEGY

	Components	Grading	COs	Blooms Taxo
Continuous	Class Test 1-3/ Assignment	20%	co1, co2, co3	C1, C2,
Assessment	Class Attendance	5%		
(40%)	Class Performance	5%		
	Mid term	10%	CO1, CO2, CO3	C1, C2,
	·		CO1	C1
Final Exam (Section A & B)		60%	CO2	C2
			CO3	C3
	Total Marks	100%		·

(CO = Course Outcome, C = Cognitive Domain, A = Affective Domain, P = Psychomotor Domain)

REFERENCE BOOKS

- 1. Physics for Engineers : Part-I and Part-II : Dr Giasuddin Ahmad
- 2. Physics, Volume I and Volume II: Resnick and Halliday
- 3. Fundamentals of Physics : Halliday, Resnick and Walker
- 4. Physics for Scientists and Engineers: Serway and Jewett
- 5. Waves and Oscillations : Brij Lal and Subramannyam
- 6. Introduction to Solid State Physics: Charles Kittle
- 7. Solid State Physics: S. O. Pillai
- 8. Solid State Physics: Ali Omar
- 9. Fundamentals of Solid State Physics: B.S. Saxena, R.C. Gupta, P.N. Saxena

10. B.Sc Physics : C. L. Arora.

11. Heat & Thermodynamics : Brijlal and N. Subrahmanyam

12. A Text Book of Heat : T. Hossain

COURSE INFORMATION

Course : PHY 134 Lecture Contact : 3.00

Code Hours

Course : Physics Sessional Credit Hours : 1.50

Title

PRE-REQUISITE

N/A

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This is a laboratory course in basic physics in the fields of waves and oscillations, optics, mechanics, electricity, modern physics, and thermal physics. The course will emphasize the fundamental experiments in different fields of physics that can be applicable to a wide spectrum of engineering disciplines. This laboratory course will enable students to understand basic physics practically as well as work with a team or individual.

OBJECTIVE

- 1. To develop basic physics knowledge practically
- 2. To practice use of basic scientific instrument

L	LEARNING OUTCOMES & GENERIC SKILLS									
N		Course Outcomes	Corresp	Bloom's	CP	CA	KP	Asses		
		At the end of the course, a student should be able to	onding POs	Taxonom Y				sment Metho ds		

CO1	Define the different parameters regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.	PO1	C1		K1	R, Q, F
CO2	Describe the different phenomena regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.	P01	C1		K1	R, Q, T, F
CO3	Experiments by an individual or by a group to determine different phenomena regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.	PO1	C2		K2	R, Q, T, F
CO4	Prepare a report for an experimental work.	PO1	C2		К2	R

(CP - Complex Problems, CA - Complex Activities, KP - Knowledge Profile, T - Test, PR - Project, Q - Quiz, ASG - Assignment, Pr - Presentation, R - Report, CS - Case study, MT- Mid Term Exam, F - Final Exam)

COURSE CONTENT

Quantitative measurement of different parameters in the field of waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics such as:

Specific resistance of materials, high resistance, resistance of a galvanometer, Electrochemical equivalent (ECE) of copper, comparison of the E.M.F's of two cells, radius of curvature, wavelength of light, focal length of lens, specific rotation of sugar, refractive index of a liquid, frequency of a tuning fork, acceleration due to gravity, spring constant, rigidity modulus, young's modulus, moment of inertia, conservation of linear momentum, thermal conductivity of a bad conductor, temperature coefficient of resistance, pressure co-efficient of a gas, specific heat of a liquid, surface tension, Planck's constant.

CO-PO MAPPING

No.			PROGRAM OUTCOMES (PO)										
NO.			2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to Define the different parameters regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.												
CO2	Be capable to Describe the different phenomena regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.												
CO3	Be skilled to Construct Experiments by an individual or by a group to determine different phenomena regarding waves and oscillations, optics, mechanics, electricity, modern physics and thermal physics etc.												
CO4	Be able to Prepare a report for an experimental work.												

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

TEACHING LEARNING STRATEGY						
Teaching and Learning Activities	Engagement (hours)					
Face-to-Face Learning						
Lecture	7					
Experiment	35					
Self-Directed Learning						
Preparation of Lab Reports	20					
Preparation for the Lab Test	13					
Preparation of Quiz	9					

Preparation of viva	9
Formal Assessment	
Continuous Assessment	14
Final Quiz	1
Final viva	1
Final lab exam	3
Total	112

TEACHING METHODOLOGY

Lecture followed by practical experiments and discussion, Cooperative and Collaborative Method, Project Based Method

COURSE S	SCHEDULE	
Weeks	Topics	Remar ks
Week-1	Introductory class: Brief discussion on total syllabus, basic requirements of the course, evaluation system of the course, grouping, visit different section of the laboratory, introduction to different basic equipment	
Week-2	Determination of the specific resistance of a wire using meter bridge or determination of ECE of copper by using copper voltameter	
Week-3	Determination of high resistance by the method of deflection and determination of resistance of a galvanometer by half deflection method or comparison of the E.M.F's of two cells by a potentiometer	
Week-4	Determination of the wavelength of sodium light by a spectrometer using a plane diffraction grating or determination of the specific rotation of sugar by polarimeter	
Week-5	Determination of the radius of curvature of a plano-convex lens by Newton's ring method or determination of focal length of a concave lens by auxiliary lens method	
Week-6	Determination of the frequency of a tuning fork by Melde's experiment or determination of the Planck's constant using photoelectric effect	
Week-7	Determination of the value of g acceleration due to gravity by means of a compound pendulum	

Week-8	Determination of the spring constant, effective mass and the rigidity modulus of the spring or determination of the Young's modulus of bar by bending method	
Week-9	Determination of the moment of inertia of a Fly- wheel about its axis of rotation or verification of the law of conservation of linear momentum	
Week-	Determination of the thermal conductivity of a bad conductor by Lee's method or determination of specific heat of a liquid by the method of cooling	
Week- 11	Determination of the pressure co-efficient of a gas at constant volume by constant volume air thermometer or determination of the temperature co-efficient of resistance of the material of a wire using a meter-bridge	
Week- 12	Viva & lab final experimental exam	
Week- 13	Viva & lab final experimental exam	
Week- 14	Quiz exam	

ASSESSMENT STRATEGY

			CO	Blooms
C	omponents	Grading	CO	Taxonomy
Continuou	Class performance/ Assignment	10%		
Assessmen t (40%)	Report Writing/ Assignment	30%	CO1, CO4	C1, C2
Final	Lab test	30%	CO1 CO2	
Exam	Viva	10%	CO1, CO2, CO3	C1, C2
(60%)	Quiz	20%	CO3	
Тс	tal Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, A = Affective Domain, P = Psychomotor Domain)

REFERENCE BOOKS

- 1. Practical physics for degree students : Dr Giasuddin Ahmad and Md. Sahabuddin
- 2. Practical Physics: G. L. Squires
- 3. B.Sc. Practical Physics: C. L Arora
- 4. Practical Physics: S.L. Gupta and V. Kumar

COURSE INFORMATION							
Course Code	: CHEM 109	Contact Hours	: 3.00				
Course Title	: Basic Chemistry	Credit Hours	: 3.00				

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To learn the basic concepts of inorganic, organic and physical chemistry

OBJECTIVE

- 1. To define the different parameters and concepts of inorganic, organic and physical chemistry
- 2. To apply different chemical theory to evaluate structure of molecules
- 3. To describe basic reaction mechanism of the organic reactions
- 4. To solve quantitative problems regarding inorganic and physical chemistry

COURSE OUTCOMES AND GENERIC SKILLS

No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Be able to define the different parameters and concepts regarding inorganic, organic, and physical chemistry.	1	C1			1	MID, T/Asg, F
CO2	Be able to apply different theory on chemical bonding and hybridization to determine structure of molecules.	1	C3			1,2	T/ASG, F, MID
CO3	Be able to explain the selective topics on organic chemistry.	1	C2			1,2	T/ASG, F, MID

-	ems in the field of anic, and physical	1	C3		1,2	MID,T/AS G, F
---	--	---	----	--	-----	------------------

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; Pr-Presentation; $MID-Mid\ term\ exam,\ R-Report$; $F-Final\ Exam$)

COURSE CONTENT

Atomic Structure: Concepts of atomicstructure, Different atom models, Quantum theory and electronic configurations, Heisenberg's uncertainty principle

Periodic Table: Periodic classification of elements, Periodic properties of elements, Properties and uses of noble gases

Chemical Bonding: Types and properties, VBT, MOT, Hybridization and shapes of molecules Selective topics on Organic chemistry: Different types of organic reractions (Addition, elimination, substitution, polymerization), Introduction to organic polymer, basic concepts of dyes, color and constitution

Acids-Bases/Buffer Solution: Different concepts of acids-bases, Buffer solution, Mechanism of buffer solution, Henderson-Hasselbalch equation, Water chemistry and pH of water

Corrosion: Nature, forms and types of corrosion, electrochemical mechanism and prevention of corrosion

Solutions: Solutions and their classification, Unit expressing concentration, Colligative properties and dilute solutions, Raoult's law, Van't Hoff's law of osmotic pressure

Thermochemistry: Laws of thermochemistry, Enthalpy, Heat of reaction, Heat of formation, Heat of neutralization, Kirchoff's equations, Hess'slaw

Electrochemistry: Conductors and nonconductors, Difference between electrolytic and metallic conduction, Electrolytic conductance, Factors influencing the conductivity of electrolytes, Kohlrausch Law and conductometric titrations, Different types of electrochemical cells

Chemical Equilibria: Equilibrium law/constant, K_p and K_c, Homogeneous and heterogeneous equilibrium, Van't Hoff's reaction isotherm, Le Chatelier's principle

Phase Rule: Basic terms and phase rule derivation, Phase diagram of an one component system

Chemical Kinetics: Order and rate of reaction, Pseudo and zero order reaction, Half-life,

Determination and factors affecting the rate of a reaction, First order reaction, Second order reaction, Collision theory, Transition state theory

CO-PO MAPPING

No	No. Course Outcome			PROGRAM OUTCOMES (PO)									
110.	Course Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to define the different parameter and concepts regarding inorganic, organic, and physical chemistry.	1											
CO2	Be able to apply different theory on chemical bonding and hybridization to determine structure of molecules.	2											
CO3	Be able to explain the selective topics on organic chemistry.	2											
CO4	Solve quantitative problems in the field of inorganic, and physical chemistry	2											

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning Lecture Class Performance	42 - -
Self-Directed Learning Assignments Revision of the previous lecture at home Preparation for final examination	42 21 21
Formal Assessment Continuous Assessment Final Examination	2 3
Total	131

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSESCHEDULE Week 1 CT **Atomic Structure** Class 1 General introduction, Concepts of atomic structure Class 2 Concepts of atomic structure, Different atom models Class 3 Hydrogen spectral lines, Heisenberg's uncertainty principle, de broglies equation Week 2 Atomic Structure/Periodic Table Class 4 Schrondinger equation, Quantum numbers, Electronic configuration **CT-1** Class 5 Periodic law, Features of Periodic table Class 6 Classification of elements according to electronic configurations, periodicity, Periodic properties of elements, Week 3 PeriodicTable/Chemical Bonding Class 7 Properties and uses of noble gases Class 8 Chemical bonding (types, properties) Class 9 Valence Shell Electron Pair Repulsion Theory, VBT Week 4 **Chemical Bonding** Class 10 Hybridization of molecules Class 11 Shapes of the molecule Class 12 Molecular orbital Theory Week 5 **Chemical Bonding/Selected Topics on Organic** Chemistry Molecular orbital Theory Class 13 CT-2 Class 14 Different types of organic reractions (Addition, elimination, substitution, polymerization) Class 15 Introduction to organic polymer, basic concepts of dyes, color and constitution Week 6 **Selected Topics on Organic Chemistry/ Acids-Bases**

Class 16	Basic comcepts of dye and constituents	

Class 17	Different concepts of acids-bases			
Class 18	pH, pH scale, pH of water			
Week 7	Acids-Bases/Corrosion			
Class 19	Buffer solution, Mechanism of buffer solution, common ion effect			
Class 20	Henderson-Hasselbalch equation			
Class 21	Corrosion: Nature, forms and types of corrosion			
Week 8	Corrosion/ Solutions			
Class 22	Electrochemical mechanism and prevention of corrosion			
Class 23	Solutions and their classification, Unit expressing concentration			
Class 24	Class 24 Effect of temperature and pressure on solubility, Validity and limitations Of Henry'slaw			
Week 9	Solutions/Thermochemistry	Term		
Class 25	Colligative properties and dilute solutions, Raoult's law, deviation from Raoult's law,			
Class 26	Elevation of boiling point, Freezing point depression, Van't Hoff's law of osmotic pressure			
Class 27	Laws of thermo chemistry, Enthalpy			
Week 10	Thermochemistry/Electrochemistry			
Class 28	Heat of reaction, Heat of formation, Heat of neutralization			
Class 29	Hess's law, Kirchoff's equations			
Class 30	Conductor, semiconductor, non conductor, Electrolytic conduction and its mechanism			
Week 11	Electrochemistrym			
Class 31	Faraday's law, Factors influencing the conductivity of electrolytes	CT-4		
Class 32	Conductrometric titrations			

Class 33	Different types of electrochemical cells	
Week 12	Chemical Equilibrium	

Class 34	Reversible reactions, Characteristics of chemical quilibrium, Law of
	mass action, Equilibrium constant, Units of equilibrium constant
Class 35	Relation between K _p and K _c ,van't Hoff's reaction isotherm, vant' Hoff equation
Class 36	Free energy and its significance, Heterogeneous equilibrium, Le
	Chatelier's principle
Week 13	PhaseRule/ChemicalKinetics
Class 37	Phase Rule: Basic terms and phase rule derivation
Class 38	Phase Diagram of an one component sytem
Class 39	Pseudo and zero order reaction, Half-life
Week 14	Chemical Kinetics
Class 40	Determination and factors affecting the rate of a reaction
Class 41	First order reaction, Second order reaction
Class 42	Collision theory, Transition state theory

ASSESSMENTSTRATEGY				
Compo	Components			Bloom's Taxonomy
			CO1	C1
		20%	CO2	C3
ContinuousAssessment	Class Test/Assignment	20%	CO3	C2
(40%)			CO4	C3
(40%)	Class Performance	5%	CO1	C1
	Class Performance	3%	CO2	C3
			CO3	C2
			CO4	C3
	Mid term	15%	CO1	C2
			CO2	C1

			CO3	C3
			CO4	C2
			CO1	C1
	Final Exam	60%	CO2	C3
		0070	CO3	C2
			CO4	C3
	Total Marks	100%		

(CO=Course Outcome, C=Cognitive Domain, P=Psychomotor Domain, A=Affective Domain)

TEXTANDREFERENCEBOOKS

- 1. Modern Inorganic Chemistry–S.Z. Haider
- 2. Concise Inorganic Chemistry-J.D. Lee
- 3. A Text book of Organic Chemistry-Arun Bahl And B. S. Bahl
- 4. Organic Chemistry-Morrisonand Boyd
- 5. Principles of Physical Chemistry-Haque and Nawab
- 6. Essentials of Physical Chemistry-Bahl and Tuli
- 7. Physical Chemistry-Atkins

COURSE INFORMATION								
Course Code	: CHEM 110	Contact Hours	: 3.00					
Course Title	: Chemistry Sessional	Credit Hours	: 1.50					

PRE-REQUISITE

Course Code: N/A
Course Title:

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To implement the basic concepts of inorganic and physical chemistry in a laboratory environment.

OBJECTIVE

- 1) To familiarize the students with experimentation of acid and base neutralization, titration and quantitative analysis of metals etc.
- 2) To make students proficient in iodimetric and iodometric analysis and complexometric titration etc.
- 3) To develop students' ability in estimating zinc, ferrous content in water sample by using various titrimetric methods.

LEARNING OUTCOMES AND GENERIC SKILLS

No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Be able to describe the different parameters regarding acid and base neutralization, titration and quantitative analysis of metals etc. and others key words like primary standard substances, secondary standard substances, molarity, normality, indicator, equivalent weights and so on.	1	P1			1,2	R, Q, V, F

CO2	Be able to perform experimentation regarding iodimetric and iodometric method, Complexometric titration etc.	1 5 10	P2, P3, P4, P5	1,2	R, Q, T
CO3	Be able to measure calcium, ferrous content in water Sample by using various methods.	1,5,10	P3, P4, P5	1,2	R, Q, T, Pr

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam; V-viva)

COURSE CONTENT

Quantitative chemical analysis in the field of inorganic and physical chemistry such as: Acid-base titration, Redox titration, Iodometric and Iodimetric titration, Complexometric titration.

СО-Р	CO-PO MAPPING												
No.	No. Course Outcome		PR	ROG	RA	M C)UT	CO	ME	S (F	PO)		
NO.	Course Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO 1	Be able to describe the different parameters regarding acid and base neutralization, titration and quantitative analysis of metals etc. and others key words like primary standard substances, secondary standard substances, molarity, normality, indicator, equivalent weights and so on.	2											
CO 2	Be able to perform experimentation regarding iodimetric and iodometric method, complexometric titration etc.	2				2				3			
CO 3	Be able to measure calcium, ferrous contentin water sample by using various methods.	2				2				3			

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	12
Experiment	30
Self-Directed Learning	
Preparation of Lab Reports	24
Preparation of Lab-test	10
Preparation of Quiz	10
Preparation of Presentation	6
Formal Assessment	
Continuous Assessment	10
Final Quiz	1
Total	103
TEACHING METHODOLOGV	

TEACHING METHODOLOGY

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

COURSI	ESCHEDULE								
Class/ Week	Intended topics to be covered								
Class 1	Introduction								
Class 2	Standardization of Sodium Hydroxide (NaOH) Solution with Standard Oxalic Acid dihydrate (C ₂ H ₂ O ₄ .2H ₂ O) Solution.								
Class 3	Standardization of Hydrochloric Acid (HCl) Solution with Standard Sodium Hydroxide (NaOH) Solution.								
Class 4	Standardization of Hydrochloric Acid (HCl) Solution with Standard Sodium Carbonate (Na ₂ CO ₃) Solution.								
Class 5	Determination of Calcium (Ca) Content in a Calcium Chloride dihydrate (CaCl ₂ .2H ₂ O) Solution with Standard Di-Sodium Ethylene Diammine Tetra Acetic Acid (Na ₂ -EDTA) Solution.								
Class 6	Standardization of Sodium Thiosulphate Pentahydrate (Na ₂ S ₂ O ₃ .5H ₂ O) Solution with Standard Potassium Dichromate (K ₂ Cr ₂ O ₇) Solution.								
Class 7	Estimation of Copper (Cu) Content in a Copper Sulphate Pentahydrate (CuSO ₄ .5H ₂ O) (Blue Vitriol) Solutions by Iodometric Method with Standard Sodium Thiosulphate Pentahydrate (Na ₂ S ₂ O ₃ .5H ₂ O) Solution.								
Class 8	Standardization of Potassium Permanganate (KMnO ₄) Solution with Standard Oxalic Acid dihydrate (C ₂ H ₂ O ₄ .2H ₂ O) Solution.								

	Determination of Ferrous (Fe) Content in a Ammonium Ferrous Sulphate (Mohr's
Class 9	Salt) [FeSO ₄ .(NH ₄) ₂ SO ₄ .6H ₂ O] Solution with Standard Potassium Permanganate
	(KMnO ₄) Solution.
	Determination of Ferrous content by 1,10-phenanthroline using UV-visible
Class 10	spectroscopy
Class 11	Practice Lab
Class 12	Lab Test
Class 13	Quiz Test
Class 14	Viva

ASSESSMENT STRATEGY

Compor	Grading	СО	Blooms Taxonomy	
			CO 1	P1
	Lab participation	10%	CO 2	P2,P3,P4,P5
			CO 2	P3,P4,P5
Continuous Assessment		30%	CO 1	P1
(40%)	Report writing		CO 2	P2,P3,P4,P5
			CO 2	P3,P4,P5
Quiz			CO 1	P1
		15%	CO 2	P2,P3,P4,P5
			CO 2	P3,P4,P5
Viva			CO 1	P1
		10%	CO 2	P2,P3,P4,P5
			CO 2	P3,P4,P5
Final evalu	ation		CO 1	P1
	35%	CO 2	P2,P3,P4,P5	
		CO 2	P3,P4,P5	
TotalMa	100%			

(CO = Course Outcome, C = Cognitive Domain, P = Psycho motor Domain, A=Affective Domain)

TEXTANDREFERENCEBOOKS

- 1. G.H. Jeffery, J. Bassett, J. Mendham, R.C. Denney, Vogel's Text book of Quantitative Chemical Analysis, 5th Edition, Longman Scientific and Technical, 1989
- 2. G.D.Christian., AnalyticalChemistry, 6th Edition, Wiley India Pvt. Limited, 2007
- 3. A.Jabbar Mian and M. Mahbubul Haque- Practical Chemistry

6.2 Detailed Curriculum of Mathematics Courses

Spring Semester L-1, T-I

COURSE	COURSE INFORMATION									
Course Cod	le MATH 101	Lecture Contact	3.00							
Course Title	e Differential and Integral	Hours	3.00							
	Calculus	Credit Hours								
PRE-REO	PRE-REOUISITE									

N/A

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

Purpose of this course is to introduce basic knowledge of Differential Calculus and use it in engineering study.

OBJECTIVE

- Be able to impart basic knowledge on differential and Integral Calculus to solve engineering problems and other applied problems.
- Developing understanding some of the important aspects of rate of change, area, tangent, normal and volume.
- Be expert in imparting in depth knowledge of functional analysis such as increasing, decreasing, maximum and minimum values of a function

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Correspondi ng PO	Bloom's Taxono my	СР	CA	K P	Assessm ent Methods
CO 1	Know the rate of change of a function with respect to independent variables and the different techniques of evaluating indefinite and definite integrals.	1	C1	1		1	T, F, ASG
CO 2	Apply the concepts or techniques of differentiation and integration to solve the	1	C3	1		1	T, Mid Term Exam, F

	problems related to engineering study.					
CO 3	Calculate the length, area, volume, center of gravity and average value related to engineering study	1	С3	1	1	Mid Term Exam, F, ASG

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Differential Calculus: Introduction, Differential Calculus for Engineering, Function and Limit, Continuity and Differentiability, Successive Differentiation, Leibnittz's Theorem, Rolle's Theorem, Mean Value Theorem, Taylor's theorem, Expansion of Finite and Infinite forms, Lagrange's form of remainder, Cauchy's form of remainder, Expansion of functions differentiation and integration, Indeterminate form, Cartesian differentiation, Euler's theorem, Tangent, sub tangent and Normal, sub normal, Maxima and Minima, Curvature, Asymptotes, Partial differentiation.

Integral Calculus: Definition of Integration, Importance of Integration in Eng., Integration by substitution, Integration by parts, Standard integrals, Integration by successive reduction, Definite integrals and its use, Integration as a limit of sum, summing series, Walli's formula, Improper Integrals, beta and gamma function, multiple integral and its application, Area, volume of solid revolution, Area under a plain curve, Area of the region enclosed by two curves, Arc lengths of curves.

CO-PO MAPPING

				PROGRAM OUTCOMES (PO)									
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	1	11	12
CO1	Know the rate of change of a function with respect to independent variables and the different techniques of evaluating indefinite and definite integrals.	3											
CO2	Apply the concepts or techniques of differentiation and integration to solve the problems related to engineering study.	3											
CO3	Calculate the length, area, volume, center of Gravity and average value related to engineering study.	3											

Justification for CO-PO mapping:											
Mappin g	Correspo nding Level of matching	Justifications									
CO1-	3	Knowledge of mathematics, science and engineering sciences									
PO1		has to be applied to describe the complete concept of differential and integral calculus.									
CO2-	3	To apply proper and improper integral in the field of									
PO1		Engineering study, knowledge of mathematics, science and engineering sciences are required.									
CO3-	3	In order to calculate volume, average, center of gravity and									
PO1		area of any solid revolution object, the knowledge of									
		Mathematics and engineering sciences are needed.									

COURSE SCHEDULE

ASSESSMENT STRATEGY										
Comp	onents	Grading	CO	Blooms Taxonomy						
	Class test/		CO1	C1, C2						
Continuous Assesment	Assignment 1-	20%	CO2 CO2	C3						
(40%)	Class Participation	5%	CO3	C3						
	Mid term	15%	CO2, CO3	C3						
			CO1	CO1						
Final	60%	CO2	CO2							
		CO3	CO3							
Total	Marks	100%		_						

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Week 1		
Class 1	Introduction to Differential Calculus for Engineering study, Limit of a function and its properties.	-
Class 2	Basic limit theorems with proofs, Limit of infinity and infinite limit, Sandwich (Squeezing) theorem with problems.	CT 1
Class 3	Concept of Differentiation, definition, classification of discontinuity and solving problems	
Week 2		
Class 4	Basic concept of Differentiability, definition, derivative of a function, differentiable function.	
Class 5	Differentiability – one sided derivatives (R.H.D and L.H.D), solving problems	
Class 6	Successive differentiation – Concept and problem solving]
Week 3		
Class 7	Leibnitz's theorem and its applications]
Class 8	Determination of $(y_n)_0$	
Class 9	Mean Value theorem, Taylor theorem	1
Week 4		
Class 10	Expansion of finite and infinite forms, Lagrange's and Cauchy's form of remainder.	CT 2
Class 11	Indeterminate forms – concept and problem solving,	
Class 12	L'Hospital's rules with application	
Week 5		
Class 13	Partial differentiation - partial derivatives of a function of two variables and problems	
Class 14	Partial differentiation - partial derivatives of a homogeneous function of two variables, Euler's theorem for two variables and problems	
Class 15	Partial differentiation - partial derivatives of a homogeneous function of several variables, Euler's theorem for several (three and m) variables and problem solving	
Week 6		1
Class 16	Tangents and Normals – Tangents and Normals in Cartesian, equation of tangent at the origin, equation of normal of functions of explicit and implicit forms, Angle between two intersection of two curves; problem solving	
Class 17	Tangents and Normals – Tangents and Normals in polar, Angle between two intersection of two curves; problem solving	
Class 18	Tangents and Normals – Subtangent and subnormals in Cartesian and polar coordinate; problem solving	
Week 7		

Class 19	maxima and minima of functions of single variables – concept,Increasing and decreasing function, Concave up and down with problems	
Class 20	Curvature	
Class 21	Asymptotes	
Week 8		Mid
Class 22	Introduction to integral calculus	Term
Class 23	Standard integrals – concept of definite and indefinite integrals, applications.	
Class 24	Indefinite integrals – Method of substitution, Techniques of integration	
Week 9		
Class 25	Indefinite integrals – Integration by parts, Special types of integration, integration by partial fraction,	
Class 26	Integration by the method of successive reduction	
Class 27	Definite integrals – definite integrals with properties and problems	
Week 10		
Class 28	Definite integrals – Reduction formula, Walli's formula	
Class 29	Definite integrals – definite integral as the limit of the sum	
Class 30	Beta function – concept and problem solving	CT 4
Week 11		CT 4
Class 31	Gamma function - concept and problem solving	
Class 32	Relation between beta and gamma function, Legendre duplication formula,	
	problems and applications	
Class 33	Multiple integrals – double integrals	
Week 12		
Class 34	Multiple integrals – triple integrals	
Class 35	Multiple integrals – successive integration for two and three variables	
Class 36	Area in Cartesian	
Week 13		
Class 37	Area in polar	
Class 38	Volume of solid revolution	
Class 39	Area under a plain curve in Cartesian and polar coordinates	
Week 14		
Class 40	Area of a region enclosed by two curves in Cartesian and polar coordinates	
Class 41	Arc lengths of curves in Cartesian coordinates	
Class 42	Arc lengths of curves in polar coordinates	

REFERENCE BOOKS

- 1. Calculus (9th Edition) by Howard Anton (Author), Irl C. Bivens (Author), Stephen Davis.
- 2. Calculus: An Intuitive and Physical Approach By Morris Kline.

Fall Semester L-1, T-II

COURSE INFORMATION											
Course Code	MATH 103	Lecture Contact Hours	: 3.00								
Course Title	Differential Equation and	Credit Hours	: 3.00								
	Matrix										

PRE-REQUISITE

N/A

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

Purpose of this course is to introduce basic knowledge to identify and solve differential equations and concept of matrix.

OBJECTIVE

- 1. Be able to impart basic knowledge on ordinary and partial differential equations.
- 2. Developing understanding some of the important aspects of ordinary and partial differential equations.
- 3. Be able to provide knowledge on using concept of Differential equations and matrix in engineering problems and solve other applied problems.
- 4. Be expert in imparting in depth knowledge on inverse matrix.

LEARNING OUTCOMES & GENERIC SKILLS Course Outcomes Corresponding Bloom's KP CP CAAssessment No. PO Taxonomy Methods **Define** various types of differential equations and C1, C2, 1 T, F, ASG 1 1 the classifications of partial C3 CO1 differential equations. **Solve** ordinary and partial T, Mid C1, C2, differential equations by 1 1 Term Exam, 1 C3 CO₂ using different rules F **Apply** the technique of Mid Term inverse matrix and echelon C1, C2, 1 1 form to get the solution of 1 Exam, F, C3 System of Linear Equation. ASG CO₃

(CP – Complex Problems, CA – Complex Activities, KP – Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, CS – Case study, F – Final Exam)

COURSE CONTENT

Differential Equations: Introduction & Formulation of DE in Engg, Degree and order of ODE, solution of first order but higher degree DE by various methods, solution of general DEs of second and higher order, Solution of Euler's homogeneous linear DEs, Solution of DEs by methods based on factorization, Frobenious methods, Bessel's functions, Legendre's polynomial, linear first order PDE, Non linear first order PDE, Standard form DEs of higher order and wave equation, particular solutions with boundary and initial condition, Non-linear PDE of order one, Charpit's method, Linear PDE with constant coefficients, Applications of DE

Matrix: Definition of Matrix, different types of matrices, Algebra of Matrices, Transpose and adjoint of a matrix and inverse matrix, rank and elementary transformation, solution of linear equation or System of Linear Equation, Matrix polynomials determination characteristic roots and vectors, characteristic subspace of matrix and Eigen values and Eigen Vectors, Cayley Hamilton

CO-P	CO-PO MAPPING												
No.	Course Outcome	PROGRAM OUTCOMES (PO)											
NO.	Course Outcome	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Define various types of differential equations and the classifications of partial differential equations.	3											
CO2	Solve ordinary and partial differential equations by using different rules	3											
CO3	Apply the technique of inverse matrix and echelon form to get the solution of System of Linear Equation.	3											

theorem.

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTIFICATI	JUSTIFICATION FOR CO-PO MAPPING										
Mapping	Level of	Justification									
	Matching										
CO1-PO1	3	The knowledge of mathematics, science and engineering									
		sciences has to be applied to describe for the physical									
		explanation of differential equations.									
CO2- PO1	3	The application of differential equations needs the knowledge									
		of mathematics, science and engineering for describing									
		exponential growth and decay, the population growth of									
		species or change in investment return over time.									

CO3- PO1		establish for finding the technique to obtain of mathematics and natural science is re						
TEACHING	LEARNING STRATEGY							
Teaching and	Learning Activities	Engagement	(hours)					
Face-to-Face Learning 42								
Self-Directed	Learning	75						
Formal Assessment 5.5								
Total		122.	5					
TEACHING	METHODOLOGY							
Class Lecture,	Pop quiz, Case study, Problem s	olving						
COURSE SC	HEDULE							
Week 1								
Class 1-3	Introduction & Formulation of I	DE in Engg, Degree and order of ODE						
Week 2		-						
Class 4-6	Solution of first order but higher	degree DE by various methods						
W 1 2			CT 1					
Week 3	C-1-4:							
Class 7-9	homogeneous linear DEs	nd and higher order, Solution of Euler's						
Week 4								
Class 10-12	Solution of DEs by methods bas Bessel's functions, Legendre's p	ed on factorization, Frobenious methods, polynomial	CT 2					
Week 5								
Class 13-15	Linear first order PDE, Non line	ar first order PDE						
Week 6								
Class 16-18	Particular solutions with bounda order one: Charpit's method	ry and initial condition, Non-linear PDE of						
Week 7								
Class 19-21	Linear PDE with constant coeffi	cients, Applications of DE						
Week 8								
Class 22-24	Wave equations, Particular solu	tions with boundary and initial conditions	Mid					
Week 9			Ter					
Class 25-27	Second order PDE and classificatelliptic, hyperbolic solution by s	ntions to canonical (standard)- parabolic, eparation of variables.	m					
Week 10								
Class 28	Application of OD and PDE in l	•	CT 2					
Class 29	Definition of Matrix, different ty	ypes of matrices, Algebra of Matrices,	CT 3					

Class 30	Transpose and adjoint of a matrix and inverse matrix	
Week 11		
Class 31-33	Solution of linear equation or System of Linear Equation	
Week 12		
Class 34-36	Solution of linear equation using Inverse Matrix, Rank, Nullity and elementary transformation	
Week 13	cientary transformation	
Class 37-39	Dependent and independent of vectors, Matrix polynomials determination characteristic roots and vectors	
Week 14		
Class 40-42	Characteristic subspace of matrix and Eigen values and Eigen Vectors, Cayley Hamilton theorem and its application. Finding inverse matrix using this theorem.	

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessment	l	
1	Assignment	20	
2	Assignment	20	
	Exam	l	
1	Final Exam, CT	80	
2	Final Exam, CT, MID	80	
3	Final Exam, CT	100	

REFERENCE BOOKS

- 1. Elementary Linear Algebra 10th Edition by Howard Anton (Author).
- 2. Ordinary and Partial Differential Equations By Dr. M.D. Raisinghania , S. Chand Publishing version) Wiley

Spring Semester L-2, T-I

COURSE INFORMATION											
Course Code	MATH 201	Lecture Contact Hours	: 3.00								
Course Title	Vector Analysis, Laplace	Credit Hours	: 3.00								
	Transformation and Coordinate										
	Geometry										
PRE-REQUIS	SITE										
MATH 101 an	d MATH 103										
CURRICULUM STRUCTURE											

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

Purpose of this course is to introduce basic knowledge to identify and solve vector mathematical problems, to demonstrate practical applications of Laplace Transform and analyze co-ordinate geometry.

OBJECTIVE

- 1. Be able to impart basic knowledge on ordinary and partial differential equations.
- 2. Developing understanding some of the important aspects of ordinary and partial differential equations.
- 3. Be able to provide knowledge on using concept of Differential equations and matrix in engineering problems and solve other applied problems.
- 4. Be expert in imparting in depth knowledge on inverse matrix.

LEAL	LEARNING OUTCOMES & GENERIC SKILLS											
No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods					
CO1	Know the physical explanation of different vector notation and Laplacetransform, inverse Laplace transform, some properties and definition of Geometry.	1	C1 - C2	1			T,F,ASG					
CO2	Explain the characteristics of conics and familiarize with straight lines, pair of straight lines, circles, radical axis and center in 2D and 3D co-ordinate systems.	ze with , pair of , circles, nd center in		1			T, Mid Term Exam, F					
CO3	Calculate length, volume and area of objects related to engineering study by using vector.	1	C3	1			Mid Term Exam, F, ASG					
CO4	Apply Laplace transform to ODE and PDEs and the knowledge of geometry specially the pair of straight lines, circles, system of circles, parabola, ellipse etc in	1	C3	1								

engineering study.			

(CP – Complex Problems, CA – Complex Activities, KP – Knowledge Profile, T – Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, CS – Case study, F – Final Exam)

COURSE CONTENT

Vector Analysis: Definition of Vector and scalers & vector algebra, Scaler and vector products of two vectors and their geometrical interpretation, Triple products and multiple products, Linear dependence and independence of vectors, Differentiation of vectors, Gradient of scaler functions, Divergence and curl of point functions, physical significance of gradient, divergence and curl, Definition of line, surface and volume integral, Integration of Vectors, Green's theorem and its application, Stoke's theorem and its application, Gauss theorem and its application in Engineering.

Laplace Transform: Definition of LT and Application of LT for Engineering, LT of some elementary functions and properties of LT, Sufficient condition for existence of LT, Inverse LT, LT of derivatives, Unit step function, Periodic function, Some special theorems on LT, Partial fraction, Solution of DEs by LT, Heaviside expansion formula, Convolution theorem, Evaluation of improper integral, Application of LT.

Co-ordinate Geometry: Introduction to geometry for Engineering and Rectangular co-ordinates, Transformation of co-ordinates, changes of axes, pair of straight lines, general equation of second degree and reduction to its standard forms and properties, circles (tangents, normal, chord of contact, pole and polar), Equation of conics, homogeneous equations of second degree, angle between straight lines, pair of lines joining the origin to the point of intersection of two given curves, equations of parabola, ellipse in Cartesian and polar coordinates, system of circles (radical axes, coaxial circles, limiting points), Three dimensional co-ordinate system, direction cosines, projections, the plane (angle between two planes, parallel & perpendicular plane, distance of a point from a plane) and the straight line (coplanar lines, shortest distance between two given straight lines), standard equation of sphere, ellipsoid, hyperboloid straight lines, standard equation of coincides, sphere and ellipsoid.

SKILL MAPPING

Nie	Course Outcome	PROGRAM OUTCOMES (PO)						O)					
No.	Course Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Know the physical explanation of different vector notation and Laplace transform, inverse Laplace transform, some properties and definition of Geometry.												
CO2	Explain the characteristics of conics and familiarize with straight lines, pair of straight lines, circles, radical axis and center in 2D and 3D co-ordinate systems.	3											
СОЗ	Calculate length, volume and area of objects related to engineering study by using vector.	3											
CO4	Apply Laplace transform to ODE and PDEs and the knowledge of geometry specially the pair of straight lines, circles, system of circles, parabola, ellipse etc in engineering study.	3											

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

Mapping	Corresponding	Justifications						
	Level of matching							
CO1- PO1	3	The knowledge of mathematics, science and engineering sciences has to be applied to describe the operation of being able to identify the physical explanation of different vector notation, explain the complete concept about Laplace transform, 2D and 3D geometry.						
CO2- PO1	3	To explain the differentiation and integration of a vector valued functions in Cartesian, cylindrical and spherical geometry and to solve the problems of the pair of straight lines, circles, system of circles, parabola, ellipse etc. The concept of mathematics and engineering sciences is required.						
CO3- PO1	3	In order to construct and calculate the area and volume of objects related to engineering study by using vector, solve the differential equations by Laplace transform is needed the concept of mathematics, physics and engineering sciences.						

TEACHING LEARNING STRATEGY							
Teaching and Learning Activities	Engagement (hours)						
Face-to-Face Learning							
Lecture	42						

Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	42
Revision of the previous lecture at home	21
Preparation for final examination	21
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	131

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Class 4 Triple products and multiple products, Linear dependence of vectors, Differentiation of vectors Class 5 Gradient of scaler functions, Divergence and curl of point functions Class 6 Physical significance of gradient, divergence and curl Week 3 Class 7-9 Definition of line, surface and volume integral, Integration of Vectors, Green's theorem and application Week 4 Class 10 Gauss theorem and application in Engineering Class 11 Stoke's theorem and it's application. Class 12 Introduction to geometry for Engineering and Rectangular co-ordinates, Transformation of co-ordinates Week 5 Class 13-15 Introduction to geometry for Engineering and Rectangular co-ordinates, Transformation of co-ordinates, changes of axes, pair of straight lines, general equation of second degree and reduction to its standard forms and properties			
Week 2 Class 4 Triple products and multiple products, Linear dependence and independence of vectors, Differentiation of vectors Class 5 Gradient of scaler functions, Divergence and curl of point functions Class 6 Physical significance of gradient, divergence and curl Week 3 Class 7-9 Definition of line, surface and volume integral, Integration of Vectors, Green's theorem and application Week 4 Class 10 Gauss theorem and application in Engineering Class 11 Stoke's theorem and it's application. Class 12 Introduction to geometry for Engineering and Rectangular co-ordinates, Transformation of co-ordinates Week 5 Class 13-15 Introduction to geometry for Engineering and Rectangular co-ordinates, Transformation of second degree and reduction to its standard forms and properties	Week 1		
Class 4 Triple products and multiple products, Linear dependence and independence of vectors, Differentiation of vectors Class 5 Gradient of scaler functions, Divergence and curl of point functions Class 6 Physical significance of gradient, divergence and curl Week 3 Class 7-9 Definition of line, surface and volume integral, Integration of Vectors, Green's theorem and application Week 4 Class 10 Gauss theorem and application in Engineering Class 11 Stoke's theorem and it's application. Class 12 Introduction to geometry for Engineering and Rectangular co-ordinates, Transformation of co-ordinates Week 5 Class 13-15 Introduction to geometry for Engineering and Rectangular co-ordinates, Transformation of co-ordinates, changes of axes, pair of straight lines, general equation of second degree and reduction to its standard forms and properties	Class 1-3		
of vectors, Differentiation of vectors Class 5 Gradient of scaler functions, Divergence and curl of point functions Class 6 Physical significance of gradient, divergence and curl Week 3 Class 7-9 Definition of line, surface and volume integral, Integration of Vectors, Green's theorem and application Week 4 Class 10 Gauss theorem and application in Engineering Class 11 Stoke's theorem and it's application. Class 12 Introduction to geometry for Engineering and Rectangular co-ordinates, Transformation of co-ordinates Week 5 Class 13-15 Introduction to geometry for Engineering and Rectangular co-ordinates, Transformation of co-ordinates, changes of axes, pair of straight lines, general equation of second degree and reduction to its standard forms and properties	Week 2		CT 1
Class 6 Physical significance of gradient, divergence and curl Week 3 Class 7-9 Definition of line, surface and volume integral, Integration of Vectors, Green's theorem and application Week 4 Class 10 Gauss theorem and application in Engineering Class 11 Stoke's theorem and it's application. Class 12 Introduction to geometry for Engineering and Rectangular co-ordinates, Transformation of co-ordinates Week 5 Class 13-15 Introduction to geometry for Engineering and Rectangular co-ordinates, Transformation of co-ordinates, changes of axes, pair of straight lines, general equation of second degree and reduction to its standard forms and properties	Class 4		
Week 3 Class 7-9 Definition of line, surface and volume integral, Integration of Vectors, Green's theorem and application Week 4 Class 10 Gauss theorem and application in Engineering Class 11 Stoke's theorem and it's application. Class 12 Introduction to geometry for Engineering and Rectangular co-ordinates, Transformation of co-ordinates Week 5 Class 13-15 Introduction to geometry for Engineering and Rectangular co-ordinates, Transformation of co-ordinates, changes of axes, pair of straight lines, general equation of second degree and reduction to its standard forms and properties	Class 5	Gradient of scaler functions, Divergence and curl of point functions	
Class 7-9 Definition of line, surface and volume integral, Integration of Vectors, Green's theorem and application Week 4 Class 10 Gauss theorem and application in Engineering Class 11 Stoke's theorem and it's application. Class 12 Introduction to geometry for Engineering and Rectangular co-ordinates, Transformation of co-ordinates Week 5 Class 13-15 Introduction to geometry for Engineering and Rectangular co-ordinates, Transformation of co-ordinates, changes of axes, pair of straight lines, general equation of second degree and reduction to its standard forms and properties	Class 6	Physical significance of gradient, divergence and curl	
Green's theorem and application Week 4 Class 10 Gauss theorem and application in Engineering Class 11 Stoke's theorem and it's application. Class 12 Introduction to geometry for Engineering and Rectangular co-ordinates,	Week 3		
Class 10 Gauss theorem and application in Engineering Class 11 Stoke's theorem and it's application. Class 12 Introduction to geometry for Engineering and Rectangular co-ordinates,	Class 7-9		
Class 10 Stoke's theorem and it's application. Class 12 Introduction to geometry for Engineering and Rectangular co-ordinates, Transformation of co-ordinates Week 5 Class 13-15 Introduction to geometry for Engineering and Rectangular co-ordinates, Transformation of co-ordinates, changes of axes, pair of straight lines, general equation of second degree and reduction to its standard forms and properties	Week 4		
Class 12 Introduction to geometry for Engineering and Rectangular co-ordinates, Transformation of co-ordinates Week 5 Class 13-15 Introduction to geometry for Engineering and Rectangular co-ordinates, Transformation of co-ordinates, changes of axes, pair of straight lines, general equation of second degree and reduction to its standard forms and properties	Class 10	Gauss theorem and application in Engineering	CT 2
Transformation of co-ordinates Week 5 Class 13-15 Introduction to geometry for Engineering and Rectangular co-ordinates, Transformation of co-ordinates, changes of axes, pair of straight lines, general equation of second degree and reduction to its standard forms and properties	Class 11	Stoke's theorem and it's application.	
Class 13-15 Introduction to geometry for Engineering and Rectangular co-ordinates, Transformation of co-ordinates, changes of axes, pair of straight lines, general equation of second degree and reduction to its standard forms and properties	Class 12		
Transformation of co-ordinates, changes of axes, pair of straight lines, general equation of second degree and reduction to its standard forms and properties	Week 5		
	Class 13-15	Transformation of co-ordinates, changes of axes, pair of straight lines, general equation of second degree and reduction to its standard forms and	
Week 6	Week 6		

	conics, homogeneous equations of second degree, angle between straight lines, pair of lines joining the origin to the point of intersection of two given curves	
Week 7		
Class 19-21	Circles (tangents, normal, chord of contact, pole and polar), Equation of conics, homogeneous equations of second degree, angle between straight lines, pair of lines joining the origin to the point of intersection of two given curves	
Week 8		Mid
Class 22-24	Equations of parabola, ellipse in Cartesian and polar coordinates, system of circles (radical axes, coaxial circles, limiting points	Term
Week 9		
Class 25-24	Three dimensional co-ordinate system, direction cosines, projections, the plane (angle between two planes, parallel & perpendicular plane, distance of a point from a plane) and the straight line (coplanar lines, shortest distance between two given straight lines), standard equation of sphere, ellipsoid, hyperboloid	
Week 10		
Class 28	Three dimensional co-ordinate system, direction cosines, projections, the plane (angle between two planes, parallel & perpendicular plane, distance of a point from a plane) and the straight line (coplanar lines, shortest distance between two given straight lines), standard equation of sphere, ellipsoid, hyperboloid	CT 3
Class 29-30	Definition of LT and Application of LT for Engineering, LT of some elementary functions and properties of LT	
Week 11		
Class 31-33	Sufficient condition for existence of LT, LT of derivatives and it's application, LT of Integration with application, LT of sine and cosine integral	
Week 12		
Class 34	Unit step function and it's application	
Class 35	Periodic function with examples, LT of some special function.	
Class 36	Definition of inverse Laplace Transform and it's properties	
Week 13		
	Partial fraction and it's application in inverse Laplace Transform	
Class 37	Heaviside formula and it's application	
Class 37 Class 38		
	Convolution theorem, Evaluation of improper integral, Application of LT	
Class 38		
Class 38 Class 39 Week 14		

		1

ASSESSMENT STRATEGY

COs	Assessment Method	(100%)	Remarks
	Class Assessment		
1	Assignment	20	
2	Assignment	20	
	Exam	_	
1	Final Exam, CT	80	
2	Final Exam, CT, MID	80	
3	Final Exam, CT	100	

REFERENCE BOOKS

- 1. Vector Analysis, 2nd Edition 2nd Edition by Murray Spiegel, Seymour Lipschutz, Dennis Spellman
- 2. Schaum's Outline of Laplace Transforms by Murray R. Spiegel.
- 3. Engineering Mathematics, Volume Two 2 II: Containing Coordinate Geometry of Two Dimensions, Co-ordinate Geometry of Three Dimensions, Matrices.
- 4. Theory of Equations and Vector Calculus by K. Kandasamy, P.; Thilagavathy, K.; Gunavathy
- 5. A Text Book on Co-ordinate Geometry with Vector Analysis Rahman & Bhattacharjee.

OURSE INFORMATION									
Course Code	: LANG 102	Contact Hours	: 3.00						
Course Title	urse Title : Communicative English -I Credit Hours : 1.50								
PRE-REQUISITE									
None									
CURRICULU	CURRICULUM STRUCTURE								
Outcome Based Education (OBE)									
SYNOPSIS/RATIONALE									

The English language course is designed for the students to develop their competence in communication skills for academic purposes emphasizing speaking, reading, listening and writing. The approach will be communicative and interactive and will involve individual, pair and group work. Students will be exposed to diverse text types to refine their reading skills, engaging in activities and discussions that foster effective writing type. The course incorporates a wide range of reading texts to develop students' critical thinking which is one of the most essential elements required to write a good piece of academic writing. Special emphasis is placed on the various forms of essay including descriptive, narrative, cause-effect, compare-contrast, and argumentative. Upon completion of this course, student should demonstrate proficiency in communication across diverse contexts, engage in group activities, and deliver formal speech for academic, professional and social purposes. This course also incorporates classroom instructions to provide guidelines on presentations and communication skills. Addionally, the couse emphasizes providing constructive feedback on students' oral performances.

OBJECTIVES

- To develop the four basics skills of English language, i.e. listening, speaking, reading and writing.
- To enhance students' interpersonal skills through participation in various group interactions and activities.
- To improve students' pronunciation to enhance comprehensibility in both speaking and listening.
- To gain proficiency in crafting well- organized paragraphs and learn to edit and revise both their own as well as peer's writing.

COURSE CONTENT

Speaking: Introduction to Language: Introducing basic skills of language. English for Science and Technology Self-introduction and introducing others: How a speaker should introduce himself to any stranger / unknown person / a crowd. Name, family background, education, experience, any special quality/interest, likings/disliking, etc. Asking and answering questions, Expressing likings and disliking; (food, fashion etc.) Asking and giving directions Discussing everyday routines and habits, Making requests/offers/invitations/excuses/apologies/complaints Describing personality, discussing and making plans(for a holiday or an outing to the cinema), Describing pictures / any incident / event Practicing storytelling, Narrating personal experiences/Anecdotes Telephone conversations (role play in group or pair) Situational talks / dialogues: Practicing different professional conversation (role play of doctor-patient conversation, teacher –student conversation)

Listening: Listening and understanding: Listening, note taking and answering questions; Students will listen to recorded text, note down important information and later on will answer to some questions Difference between different accents: British and American accents; Documentaries from BBC and CNN will be shown and students will try to understand; Listening to short conversations between two persons/more than two.

Reading: Reading techniques: scanning, skimming, predicting, inference; Reading Techniques: analysis, summarizing and interpretation of texts.

Writing: Introductory discussion on writing, prewriting, drafting; Topic sentence, paragraph

development, paragraph structure, describing a person/scene/picture, narrating an event Paragraph writing, Compare-contrast and cause- effect paragraph.

COU	COURSE OUTCOMES AND SKILL MAPPING												
No.	COURSE OUTCOMES (COs)			P	ROGR	RAMN	ИЕ О	UTCO	OMES	S (PO	s)		
	OUTCOMES (COS)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	Communicate in English quickly and smartly using the techniques learnt in the class.	✓											
2	Understandthetechniquesofacademic readingandwriting	✓											
3	Communicate ideas and opinions effectively within the shortest possible time										✓		
4	Excel in oral and written communication/ Presentation competency										✓		

COL	COURSE OUTCOMES AND GENERIC SKILLS								
No.	Course Outcomes	Corresponding POs	Bloom's Taxonomy	CP(WP)	CA(EA)	KP(WK)	Assessment Methods		

CO1	Communicate in English quickly and smartly using the techniques learnt in the class.	PO1	L2	1	1	1	Assignment, Quiz
CO2	Understand the Techniques of academic reading and writing	PO1	L3	1	1	1	Project/ Assignment, Quiz
CO3	Communicate ideas and opinions effectively within the shortest possible time	PO10	L4	ı	ı	1	Project, Assignment, Quiz
CO4	Excel in oral and written communication/ Presentation competency	PO10	L5	-	-	2	Project/ Assignment, Quiz

WP= Washington Accord Complex Problem Solving/ CP= Complex Problem Solving; EA= Engineering Activities/ CA= Complex Activities; WK= Washington Accord Knowledge Profile/ KP= Knowledge Profile

TEACHING LEARNING STRATEGY	
Teaching and Learning Activities	Engagement (hours)
Face to Face Learning	- 42
Lecture	42
Practical / Tutorial / Studio	42
Student-Centered Learning	
Guided Learning	30
Assignment Preparation	-
Independent Learning	
Individual learning Preparation	-
for Report	-
Assessment	
Continuous assessment (Descriptive writing	04
Reading Test, Listening Test,	-
Public Speaking)	-
Report Submission	
Presentation	
Total	88

TEACHING METHODOLOGY

Lecture and Discussion, Tutorial, Assignment, Report

TEACHING SCHEDULE

Week	Topics	Remarks
	Introduction to Language: Introducing basic skills of language; English for Science and Technology	Assignment , Project,
1	Self-introduction and introducing others: How a speaker should introduce himself to any stranger / unknown person / a crowd; Name, family background, education, experience, any special quality/interest, likings/disliking, etc.	Quiz
	Self-introduction and introducing others: How a speaker should introduce himself to any stranger / unknown person / a crowd; Name, family background, education, experience, any special quality/interest, likings/disliking, etc.	
2	Asking and answering questions, Expressing likings and disliking; (food, fashion etc.) Asking and giving directions	
3	Discussing everyday routines and habits, making requests/ offers/ invitations/ excuses/ apologies/ complaints	
4	Describing personality, discussing and making plans (for a holiday or an outing to the cinema), Describing pictures / any incident / event	
5	Practicing storytelling, Narrating personal experiences/Anecdotes	
6	Telephone conversations (role play in group or pair); Situational talks / dialogues: Practicing different professional conversation (role play of doctor-patient conversation, teacher —student conversation)	
7	Listening and understanding: Listening, note taking and answering questions; Students will listen to recorded text, note down important information and later on will answer to some questions	
8	Difference between different accents: British and American accents; Documentaries from BBC and CNN will be shown and students will try to understand	
9	Listening to short conversations between two persons/more than two	
10	Reading techniques: scanning, skimming, predicting, inference;	
11	Reading techniques: scanning, skimming, predicting, inference;	

12 Introductory discussion on writing, prewriting, drafting;	12	Introductory discussion on writing, prewriting, drafting;	
--	----	---	--

13	Topic sentence, paragraph development, paragraph structure, describing a person/scene/picture, narrating an event
14	Paragraph writing, Compare-contrast and cause- effect paragraph

Components	Grading	co	Blooms Taxonomy
Continuous Assessment (Compulsory)			
Descriptive writing	20%	CO1, CO2, CO3, CO4	L2, L3, L4, L5
Reading Test	15%		
Listening Test	15%		
Public Speaking	20%		
Group Presentation	30%	CO1, CO2, CO3, CO4	L2, L3, L4, L5
Total Marks	100%		

REFERENCE BOOKS

- 1. Langan, J. (2005). College Writing Skills with Readings (6th Ed). McGraw-Hill Publication.
- 2. Interactions 1 (Reading), John Langan, Latest edition, McGraw-Hill Publication
- 3. Jones, L. (1981). Functions of English. (Student's Book, 2nd Ed.) Melbourne, Australia: Cambridge University Press.
- 4. Dixon, R.J. (1987). Complete course in English. (Book 4). New Delhi, India: Prentice Hall of India. (For book presentation).
- 5. From Paragraph to Essay Maurice Imhoof and Herman Hudson Headway Series – Advanced Level (2 parts with CDs): Oxford University Press Ltd.
- 6. Speak like Churchill stand like Lincoln James C. Humes.
- 7. Cambridge IELTS Practice Book.
- 8. Selected Sample Reports and Selected Research Articles.

Communicative English II

COURSE INFORMATION						
Course Code	: LANG 202	Lecture Contact Hours	: 3.00			
Course Title	: Communicative English -II	Credit Hours	: 1.50			

PRE-REOUISITE

LANG 102

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The English language course is designed for the students to develop their competence in communication skills for academic purposes emphasizing speaking, reading, listening and writing. The approach will be communicative and interactive and will involve individual, pair and group work. Students will be exposed to diverse text types to refine their reading skills, engaging in activities and discussions that foster effective writing type. The course incorporates a wide range of reading texts to develop students' critical thinking which is one of the most essential elements required to write a good piece of academic writing. Special emphasis is placed on the various forms of essay including descriptive, narrative, cause-effect, compare-contrast, and argumentative. Upon completion of this course, student should demonstrate proficiency in communication across diverse contexts, engage in group activities, and deliver formal speech for academic, professional and social purposes. This course also incorporates classroom instructions to provide guidelines on presentations and communication skills. Addionally, the couse emphasizes providing constructive feedback on students' oral performances.

OBJECTIVES

- To develop English language skills to communicate effectively and professionally.
- To strengthen students' presentation skills.
- To develop competency in academic reading and writing.

COURSE CONTENT

Reading: Reading Comprehension: Practice using different techniques Academic reading: comprehension from departmental or subject related passages; Vocabulary for Engineers (some common Engineering terms for both general and dept specific); Reading subject specific text to develop vocabulary

Writing: Writing semi-formal, Formal/official letters, Official E-mail Applying for a job: Writing Cover Letter and Curriculum Vitae; Essay writing: writing steps, principles and techniques, outlining, revising, editing, proofreading; Narrative and descriptive writing: comparison-contrast and cause – effect, argumentative and opinion expression, assignment writing; Analyzing and describing graphs or charts; Practicing analytical and argumentative writing

Speaking: Public Speaking: Basic elements and qualities of a good public speaker; Set Speech and Extempore Speech: How to get ready for any speech – set or extempore. Individual / Group presentation: How to be ready for presentation, prepare script for good speech, preparing power point

slides, etc. Selected books/Selected stories for presentation.

Listening: Listening to long lecture on some topics, Listening and understanding speeches/lectures of different accent.

007													
	URSE OUTCOMES AND SKIL	L MA	APIN	NG									
No.	COURSE OUTCOMES (COs)			PF	ROGR	AMN	ME O	UTC	OME	S (PC	Os)		
		P01	PO2	PO3	PO4	PO5	P06	PO7	PO8	P09	PO10	PO11	PO12
1	Understand the techniques of academic reading and become familiar with technical vocabularies.	✓											
2	Understand the techniques of effective academic writing including research article/report writing.	<											
3	Communicate effectively to present their reports and research work within the shortest possible time										√		
4	Analyze any problem critically, interpret data and synthesize information to provide valid conclusions.										✓		
COU	URSE OUTCOMES AND GENE	ERIC	SKII	LLS									
No.	Course Outcomes	Corresponding	S		Bloom's	Taxonomy	CP(WP)	CA(EA)		KP(WK)		Assessment Methods	
CO1	Understand the techniques of academic reading and become familiar with technical vocabularies.	PO1			L2		-	-		1		ignme Quiz	ent,
CO2	Understand the techniques of effective academic writing including research article/report writing.	PO1			L3		-	-		1	Ass	roject ignmo Quiz	

CO3	Communicate effectively to present their reports and research work within the shortest possible time	PO10	L4	-	-	1	Project, Assignment, Quiz
CO4	Analyze any problem critically, interpret data and synthesize information to provide valid conclusions.	PO10	L5	-	-	2	Project/ Assignment , Quiz

WP= Washington Accord Complex Problem Solving/ CP= Complex Problem Solving; EA= Engineering Activities/ CA= Complex Activities; WK= Washington Accord Knowledge Profile/ KP= Knowledge Profile

TEACHING	T TO A DINITING	CUD A TECX
THACHING	LHARNING	SIRAIHITY

Teaching and Learning Activities	Engagement (hours)
Face to Face Learning	
Lecture	-
Practical / Tutorial /	4 2
Studio Student-Centered	42
Learning	42
Guided Learning	30
Assignment Preparation	-
Independent Learning	
Individual learning	-
Preparation for Report	-
Assessment	
Continuous assessment (Writing Test	04
Reading Test Listening Test	
Public Speaking)	
Report Submission	-
Presentation	-
Total	88

TEACHING METHODOLOGY

Lecture and Discussion, Problem Based Learning (PBL)

TEACHING SCHEDULE

Week	Topics	Remarks
1	Reading Comprehension: Practice using different techniques	Assignment, Project,
2	Academic reading: comprehension from departmental or subject related passages	Quiz

3	Vocabulary for Engineers (some common Engineering terms for both general and dept specific) Reading subject specific text to develop vocabulary
4	Writing semi-formal, Formal/official letters, Official E-mail
5	Applying for a job: Writing Cover Letter and Curriculum Vitae Practicing storytelling, Narrating personal experiences/Anecdotes
6	Essay writing: writing steps, principles and techniques, outlining, revising, editing, proofreading;
7	Narrative and descriptive writing: comparison-contrast and cause – effect, argumentative and opinion expression, assignment writing;
8	Analyzing and describing graphs or charts
9	Practicing analytical and argumentative writing
10	Public Speaking: Basic elements and qualities of a good public speaker
11	Set Speech and Extempore Speech: How to get ready for any speech – set or extempore.
12	Individual / Group presentation: How to be ready for presentation, prepare script for good speech, preparing power point slides, etc. Selected books/Selected stories for presentation.
13	Listening to long lecture on some topics
14	Listening and understanding speeches/lectures of different accents

ASSESSMENT STRATEGY

Components	Grading	СО	Blooms Taxonomy				
Continuous							
Assessment Class	-						
participation Writing	20	CO1, CO2, CO3, CO4	L2, L3, L4, L5				
Test	%	(CO1, CO2, CO3, CO4	L2, L3, L4, L3				
Reading	15%						
Test	15%						
Listening	20%						
Test							
Public Speaking							
Group Presentation	30%	CO1, CO2, CO3, CO4	L2, L3, L4, L5				
Total Marks	100%						
REFERENCE BOOKS							

- 1. Jones, L. (1981). Functions of English. (Student's Book, 2nd Ed.) Melbourne, Australia: Cambridge University Press.
- 2. Dixon, R.J. (1987). Complete course in English. (Book 4). New Delhi, India: Prentice Hall of India. (For book presentation).
- 3. Langan, J. (2005). College Writing Skills with Readings (6th Ed). McGraw-Hill Publication.
- 4. Interactions 1 (Reading), John Langan, Latest edition, McGraw-Hill Publication
- 5. Headway Series Advanced Level (2 parts with CDs): Oxford University Press Ltd.
- 6. Speak like Churchill stand like Lincoln James C. Humes.
- 7. Cambridge IELTS Practice Book h. Selected Sample Reports and Selected Research Articles.

6.3 Detailed Curriculum of General Education Courses

Credit Hour: 2.0 Contact Hour: 2.0

Level/Term: 1/II Pre-requisite: Nil

Objectives:

- 1. To equip students with factual knowledge that will enable them to understand the basic nature, scope, and perspective of sociology; the stages of the social research process, and methodologies.
- 2. To analyze different social problems, economic life, and environmental issues for sustainable development.
- 3. Introduce fundamental principles and concepts of accounting, including the accounting equation and the double-entry bookkeeping system.
- 4. Explain the preparation and interpretation of financial statements, such as Statement of Financial Position, Statement of Comprehensive Income, Statement of Changes in Equity.

Course Outcomes (CO):

- a. Understand the fundamental principles of financial and cost accounting
- b. **Understand** financial reporting and analysis Understand financial reporting and analysis
- c. **Understand** the basic nature, scope, and perspectives of sociology
- d. **Analyze** different cultures, civilizations, social stratification, social systems, socialism, capitalism and different social problems.

Course Contents:

a. **Sociology:** Nature and scope of Sociology, Sociological imagination, Perspectives of sociology, Culture and civilization, Socialization and self-development, Globalization

- and social changes, Social organizations and social problems, social stratification, the industrial revolution, Capitalism and socialism, Environment, and human activities, Climate change and global risk.
- b. Accounting: History & Definition of Accounting, Objectives and Importance of Accounting, Accounting & Engineering, International Financial Reporting Standard (IFRS), Generally Accepted Accounting Principles (GAAP), Ethics in Accounting, Accounting Equation (Math), Journal, Ledger, T-account and Trial balance, Adjusting Entries, Adjusted Trial Balance, Income Statement, Retained Earnings Statement and Statement of Financial Position (Balance Sheet), Worksheet, Horizontal Analysis, Vertical Analysis and Ratio Analysis.

Teaching-learning and Assessment Strategy:

COMPONENTS	TEACHING AND LEARNING ACTIVITIES	STUDENT LEARNING TIME (SLT)
Face to Face	Lecture (2 hours/week x 14 weeks)	28
Guided Learning	Tutorial/ Assignments (2 hours/week x 5 weeks)	10
Independent	Individual learning (1-hour lecture ≈ 1 hour	24
Learning	learning) Preparation for tests and examination	13
	Pop Quiz/Class Test/Mid-Term Exam	2
Assessment	Final examination	3
	TOTAL SLT	80
	CREDIT = SLT/40	2

Note: 40 notional hours= 1 Credit

Assessment Methods*	Continuous assessment : 40%
Methodologies for Feedback on Performance	Final examination:60% 1. Discussions in class 2. Returning graded assignments and tests 3. Final grades are announced

Linkage of Course Outcomes with Assessment Methods and their Weights:

COs	Assessment Method	(100%)	Remarks
	Class Assessmen	nt	
1	Class Assessment	60	
2	Class Assessment	40	
3	Class Assessment	60	
4	Class Assessment	40	
	Exam		
1	Exam	40	
2	Exam	60	
3	Exam	40	
4	Exam	60	

Mapping of Course Outcomes and Program Outcomes:

COURSE OUTCOMES]	PRO	GRA	Bloom's taxono	Assessment tools							
(COs)	1	2	3	4	5	6	7	8	9	10	11	12	my domain/ level	0002
Understand the basic nature, scope, and perspectives of sociology.						$\sqrt{}$								Assignment, Final Exam

Analyze different cultures, civilizations, and different social problems and apply contextual knowledge to assess societal and cultural issues.			V				L3	Mid- Term,Final Exam
Understand the fundamental principles of financial and cost accounting						\	L2	Assignment, Final Exam
Understand financial reporting and analysis Understand financial reporting and analysis						√	L2	Mid- Term, Final Exam

Lecture Schedule:

Lectures	Lecture/Tutorial/Assignment Topic	CT	Remarks
Week-1			
1	Definition, nature, and scope of sociology, orientation of Sociological Theories		
2	Sociological imagination, perspectives of Sociology		
Week-2			
3	Introducing culture and its variations, Civilization		
4	Socialization process and development of self		
Week-3			
5	Introducing globalization and its impact on human life	1	
6	Addressing the social problems in Bangladesh		
Week-4			
7	Introducing social groups and organizations		
8	Introducing bureaucracy and good governance		
Week-5			
9	Industrial revolution and aftermath		
10	Capitalism and Socialism: features and influence		
Week-6			
11	Environment and human activities		
12	Climate change and global risk		
Week-7			
13	Population of Bangladesh: problem or prospect		
14	Crime and deviance: a brief analysis	MT	
Week-8			
15	Meaning, history and definition of accounting		
16	The users and uses of accounting.		
Week-9			

17	Ethics in financial reporting		
18	The cost principle, monetary unit assumption and the economic entity assumption		,
Week-10			
19	Accounting equation and its components	2	
20	The effects of business transactions on the accounting equation.		
Week-11			
21	Four financial statements and how they are prepared.		
22	Journal		
Week-12			
23	Journal		
24	T-account, Ledger, Trial balance		
Week-13			
25	Adjusting Accounts		
26	Worksheet.		
Week-14			
27	Completion of the Accounting cycle.	3	
28	Financial Statement Analysis		

Text and Ref Books:

- a. Financial Accounting IFRS edition by Weygand, Kimmel & Kieso (3th)
- b. Accounting Principles by Weygandt, Kieso & Kimmel (IFRS Latest edition)
- c. Sociology in Modules: by Richard Schaefer, 2nd edition, 2013
- d. Sociology Primary Principles: by CN Shankar Rao
- e. Anthony Giddens-7th edition

COURSE INFORMATION	
Course Code: GEBS 101	Credit Hour: 2.0
Course Title: Bangladesh Studies	Contact Hour: 2.0

PRE-REOUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/ RATIONALE

This course has been designed for undergraduate engineering students to help them learn the rich history of Bangladesh, and to provide them with basic knowledge of historical events which eventually led to the formation of Bangladesh and constitution of Bangladesh, current trends in economic development, legislation, citizen charter, cultural aspects which will make them responsible citizen.

OBJECTIVE

- 1. To equip students with factual knowledge that will enable them to learn the history of Bangladesh.
- 2. To trace the historical roots of Bangladesh as an independent state focusing on the social, cultural and economic developments that have taken place since its independence.
- 3. To promote an understanding of the development of Bangladesh and its culture.
- 4. To create an awareness among the students about the Geography, Economy, Politics and Culture of Bangladesh.

COURSE OUTCOMES & GENERIC SKILLS

No	Course Outcome	Correspondi POs	Bloom's Taxonomy	CP	CA	KP	Assessmen Methods
CO1	Be able to identify specific stages of Bangladesh's political history, through the ancient, medieval, colonial and post-colonial periods and variety of cultural identities of Bangladesh.	PO – 6	L1, L2	1		7	T, F
CO2	Be proficient to explain the economy and patterns of economic changes through qualitative and quantitative analysis.	PO – 6	L2 ,L4	7		7	T, F

*Level of Bloom's Taxonomy:

C2 – Understand C3- Apply C4_ C5_ <u>C1 – </u> <u>C6 -</u> Remember C6 - Create Evaluate Create <u>Analyze</u>

(CP - Complex Problems, CA - Complex Activities, KP - Knowledge Profile, T - Test, PR - Project, Q - Quiz, M - Mid Term Exam, Asg - Assignment, Pr - Presentation, R - Report, F -Final Exam)

COURSE CONTENT

Main Contents: Impact of Geography, History, Environment, Economy, Constitution and Culture of Bangladesh in Engineering Application

b. Detail Contents:

Bangladesh Geography: Location, Area, Boundary, Physiography, River system, Forest and Climate, Demography of Bangladesh, Maritime zones.

History: Overview of the ancient Bengal, anthropological identity of the Bengali race, main trends in the history of medieval Bengal, Bengal under the East India Company, religious and social reform movements, nationalist movements, division of the Indian sub-continent, language movement 1948-1952, education movement of 1962, six-point movement of 1966, mass uprising of 1969, war of independence and emergence of Bangladesh in 1971, Constitution of Bangladesh, Pre and post liberation development in the field of engineering and technology, Bangladesh's contribution to world peace and its security, engineering developments in Bangladesh (Kaptai Dam, Padma bridge, power plants, Karnaphuli River Tunnel etc.) and its impact on socio-economic aspect. Environment, Economy and Culture: Land, Characteristics of tropical monsoon climate, Forests and biomass, Fish, Minerals, Health, Education, Agriculture, Industries, NGOs, Population, Sociological and Cultural aspects of Bangladesh, Economy and National development, Development and Progress of the Millennium Development Goals (MDGs), Public Administration in Bangladesh, State of Good Governance in Bangladesh, Art and Literature, Main traditional cultural events, Vision-2021, Digitalization, Tourism and Natural Resources, Bangladesh and International Relations.

SKILL MAPPING (CO - PO MAPPING)

No	Course Outcome		PROGRAM OUTCOMES (POs)										
		1	2	3	4	5	6	7	8	9	10	11	12
CO1	Be able to identify specific stages of Bangladesh's political history, through the ancient, medieval, colonial and post-colonial periods and variety of cultural identities of Bangladesh.						3						
CO2	Be proficient to explain the economy and patterns of economic changes through qualitative and quantitative analysis.						3						

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

JUSTII	JUSTIFICATION FOR CO – PO MAPPING						
	Mapping	Corresponding Level of Matching	Justifications				
	CO1 – PO6	3	Ability to identify specific stages of Bangladesh's political history, through the ancient, medieval, colonial and post-colonial periods and variety of cultural identities of Bangladesh.				
	CO2 – PO6	3	Ability to explain the economy and patterns of economic changes through qualitative and quantitative analysis.				
TEAC	HING AND LE	ARNING STRATEGY					
	Teaching	g and Learning Activities	Engagement (Hours)				
	Face-to-face	Learning					
	• Lectu	ıre	28				
	Pract	ical/ Tutorial/ Studio	10				
	• Stude	ent – Centered Learning					

	Self- Directe	ed Learning				
		-face-to-face learning	8			
		ision of the previous lecture at	10			
	hom	_	18			
	• Prep	paration for final examination				
	Formal Asse	essment	3			
		tinuous Assessment(Pop	_			
		z/Class Test/Mid Term Exam)	3			
	• Fina	l Examination				
	Total 80					
TEACI	HING METH	ODOLOGY				
		oblem Based Method				
COUR	SE SCHEDUI					
		Intended Topics t	to be Covered	Assessment		
Week				CT 1		
	Class 1	Introductory class: Brief				
		syllabus, basic requirements of assessment of the course	of the course, methods of			
	Class 2	Bangladesh Geography: Lo	ocation Area Boundary			
	Class 2					
Week	Week 2 Demography of Bangladesh.					
	Class 3	Overview of the ancient	Bengal, anthropological			
		identity of the Bengali race, 1	main trends in the history			
		of medieval Bengal				
	Class 4 Bengal under the East India Company					
Week						
	Class 5	Religious and Social reform r				
	Class 6	Nationalist movements, d subcontinent	ivision of the Indian			
Week				Mid Term		
	Class 7	Language movement 1948-19 of 1962	952, Education movement	Exam		
	Class 8	Language movement 1948-19 of 1962	952, Education movement			
Week :	5	-				
	Class 9	Six-point movement of 1966,	Mass uprising of 1969			
	Class 10					
Week	in 1971 Week 6					
	Class 11					
	Class 12	1				
Week '	<u> </u>					
	Class 13	Bangladesh's contribution to	-			
		Pre and post liberation devel- and technology	opment of engineering			
	Class 14	Bangladesh's contribution to				
	Pre and post liberation development of engineering					

		and technology		
Week 8	3	0,		
	Class 15 Land, Characteristics of tropical Monsoon climate, Forests and biomass, Fish			
	Class 16 Engineering development in Bangladesh (Kaptai Dam, Padma bridge, power plants, Karnaphuli River Tunnel etc.) and its impact on socio-economic aspect			
Week 9)	· · · · · · · · · · · · · · · · · · ·		
	Class 17	Minerals, Health and Education,		
	Class 18	Agriculture, Industries		
Week 1	10		CT 2	
	Class 19	NGOs, Population, Sociological and Cultural aspects of Bangladesh		
	Class 20 Economy and national development,			
Week 1	11			
	Class 21	Development and Progress of the Millennium Development Goals (MDGs)		
	Class 22	Ultimate Disposal of Solid Waste: Method Public Administration in Bangladesh, State of Good Governance in Bangladesh		
Week 1	12			
	Class 23	Art and Literature		
	Class 24	Traditional cultural events		
Week 1	13		CT 3	
	Class 25	Vision-2021, Digitalization		
	Class 26	Tourism and Natural Resources		
Week 1				
	Class 27	Bangladesh and International Relations		
	Class 28	Revision of the course		

ASSESSMENT STRATEGY

Compo	Grading	СО	Bloom's Taxonomy	
Continuous Assessment (40%)	Class Test/ Assignment (1-3)	20%	CO1, CO2	L1, L2
7135C55IIICIII (4070)	Class Participation	5%	CO2	L2
	Mid Term	15%	CO2	L2, L4
E' 11	60%	CO1	L1, L2	
Final I		CO2	L1, L2, L4	
Total Marks	100%			

 $(CO = Course\ Outcome,\ C = Cognitive\ Domain,\ P = Psychomotor\ Domain,\ A = Affective\ Domain)$

REFERENCES BOOKS

- 1. Bangladesh Studies: Md. Shamsul Kabir Khan and Daulatunnahar Khanam
- 2. The Constitution of the People's Republic of Bangladesh
- 3. Discovery of Bangladesh: Akbar Ali Khan
- 4. History of Bangladesh, Vols, 1-3: Sirajul Islam
- 5. History of Modern Bengal, Vol, 1: R C Majumdar
- 6. Dynastic History of Bengal: Dr. Abdul Mumin Chowdhury
- 7. A History of Bangladesh: William Van Schendel
- 8. Geography of Bangladesh: Harun Er Rashid
- 9. Banglapedia: National Encyclopedia of Bangladesh, Vols, 1-10: Sirajul Islam
- 10. History of Bengal: (Mughal Period 1526-1765): R. A. Chandra
- 11. Land of Two Rivers: Nitesh Sengupta
- 12. A History of Bangladesh: Cambridge University Press
- 13. Bengali Nationalism and the Emergence of Bangladesh: A.F Salahuddin Ahmed 14. Language Movement and The Making of Bangladesh: Safar Ali Akanda

REFERENCE SITE

http://www.google.com

Course: Bangla Language and Literature

Course Code: BAN-1201

Credit Hour: 03 Total Marks: 100

১। সাধারণ। বাংলা আমাদের মাতৃভাষা। বাংলা শুধু একটি ভাষাই নয়, বরং এর সাথে বাংলাভাষী মানুষদের সংস্কৃতি, ইতিহাস এবং স্বকীয়তা ওতপ্রোতভাবে জড়িত। এই ভাষা শেখার মাধ্যমে এ অঞ্চলের মানুষদের ঐতিহ্য, মূল্যবোধ এবং জীবনপ্রক্রিয়া সম্পর্কে সম্যক ধারণা লাভ করা যায়। সর্বোপরি 'বাংলা ভাষা ও সাহিত্য' বিষয়টি অধ্যয়নের মাধ্যমে স্নাতক (সম্মান) প্রোগ্রামের ছাত্রছাত্রীগণ এর তাত্ত্বিক বিষয়ে যেমন দক্ষতা অর্জন করবে তেমনি এই কোর্স হতে লব্ধ ধারণা তাদের জ্ঞানের পরিধি ও সংস্কৃতি সম্পর্কে ধারণা বৃদ্ধি এবং এর প্রায়োগিক কৌশলসমূহ আরও ভালোভাবে রপ্ত করতে সাহায্য করবে।

2z fë¢nr-Zl E-ŸnÉz

- Lz hiwmi ijoj, hÉjLlZ J pj¢q-aÉl ®j±¢mL ¢hou pÇf-LÑ djlZj fËcje z
- Mz jja«ijojl öÜ EμQjlZ ¢nrjz
- Nz f¢Wa ¢ho-ul ijh Ae¤djhe Lli Hhw aj fËLj-n cr L-l ®ajmjz
- Oz hjwmj ijoju ®fnjNa cjç¢lL fœjmjf (Official Correspondence) Hhw pªSen£m lQejl SeÉ fËj¢aùj¢eL ¢nrj

fËcje z

3z fë-uj¢NL E-ŸnÉz

- Lz pªSen£m lQeju hjwmj ijojl cr fË-ujNz
- Mz jja«ijoju öÜ EμQjl-Z hš²hÉ fËcj-e craj ASÑez

Nz	¢m¢Ma J ®j±¢ML fË-uj-N ijojl ®p±LkÑ lrj Lljz				
Oz	jja«ijo	iu ciç¢lL fœimi-f crai ASÑ	lez		
4z	<u>fiWÉp</u>	<u>§Q£</u> z			
Lz	pj¢qal	É (fËhå, NÒf J L¢hai)	- 40 eðl		
Mz	hɡLlZ	, ijoj ¢nrj J ¢hlQe - 60 eðl			
(fËhå,	NÒf J L	haipj§q YiLi ¢hnÄ¢hcÉim	u Hhw CE¢S¢p'l ¢p-r	nhip q-a	pwNªq£a)
Nz	<u>¢ehÑi</u>	¢Qa fËhå			- 15 eðl
	(1)	hi‰imi ijoi	-	h¢^jQ	¾â Q-—ifidÉiu
	(2)	°am	-	qlfĐp	jc njÙ»£
Oz	<u>¢ehÑj</u>	¢Qa NÒf			- 15 eðl
	(1)	fy¤CjiQi		-	¢hi§¢ai§oZ h-¾c¡f¡dÉ¡u
	(2)	eueQili	- °puc	Juim£Eõ	iq
Pz	<u>¢ehÑi</u>	¢Qa L¢ha <u>i</u>			- 10 eðl
	(1)	¢h-cË¡q£		-	LiS£ eSl¦m Cpmij
	(2)	h‰ijoj	-	j¡C-Ln	n jd¤p§ce cš
Qz	<u>hɡLlZ</u>	Jijoj ¢nrj			- 25 eðl
	(1)	fË¢ja hjwmj hjej-el ¢euj:	z		
	(2)	Aö¢Ü pw-nidez			
	(3)	hjNÚdjljz			
	(4)	fËhjc fËhQez			
	(5)	HL Lbju fËLjnz			
	(6)	fËnjp¢eL f¢lijojz			
	(7)	fËju p-jjμQj¢la ¢ieÀjbÑL	në z		
	(8)	¢h¢ieÀ n-ël ¢h¢nøj-bÑ f	Ë-ujN z		
Rz	<u>EµQil</u>	<u>Z¢h¢d</u>			- 05 eðl
Sz	<u>¢hlQe</u>				- 30 eðl
	(1)	Cw-l¢S ®b-L hjwmj Ae¤h	jc/Ae¤-μRc lQejz		
	(2)	ijh pÇfËpilZ/piliwn/piljjí	Ňz		
	(3)	fœ/fË¢a-hce lQej z			

(4) fËhå lQej z

5z <u>chù¹¡cla f¡WÉp§cQ</u>z ®j¡V ®œ²¢XV - 3 (45¢f¢luX):

œ¦/ew	[®] LiX ew	[®] LjX ew fjWÉ ¢hou		j¿¹hÉ
		pj¢qaÉ (21 ¢f¢luX)	pwMÉj	
1z	hjwmj:1-4	fÐhå: hj‰imi ijoi	4	
2z	hjwmj:5-7	fĐhå: °am	3	
3z	hjwmj:8-11	NÒf: fy¤CjiQi	4	
4z	hjwmj:12-14	NÒf: eueQili	3	
5z	hjwmj:15-18	L¢haj: ¢h-âjq£	4	
6z	hjwmj:19-21	L¢haj: h‰ijoj	3	
	hɡLlZ, ij	oi ¢nri J ®j±¢ML fÊLin rjail Eæue (13 ¢f¢l	uX)	
7z	hjwmj:22-24	fĐ¢ja hjwmj hjej-el ¢euj	3	
8z	hjwmj:25-26	Aö¢Ü pw-nide	2	
9z	hjwmj:27	h¡NÚd¡l¡	1	
10z	hjwmj:28	fĐhịc fĐhQe	1	
11z	hjwmj: 29	HL Lbju fÐLjn	1	
12z	hjwmj: 30	fÐnjp¢eL f¢lijoj	1	
13z	hjwmj: 31	fĐịu pj¤µQj¢la ¢iæjbÑL në	1	
14z	hjwmj: 32	¢h¢iæ n-ël ¢h¢nøj-bÑ fÐ-ujN	1	
15z	hjwmj:33-34	EμQįlZ ¢h¢d	2	
		¢hlQe (05 ¢f¢luX)		
16z	hjwmj: 35-36	Cw-l¢S ®b-L hjwmj Ae¤hjc/Ae¤-µRc IQej	2	
17z	hjwmj: 37	ijhpÇfĐpjlZ/pjljwn/pjljjÑ	1	
18z	hjwmj: 38	fœ/fĐ¢a-hce lQei	1	
19z hjwmj: 39 fĐhå lQej		1		
		fl£rj (06 ¢f¢luX)		
20z	hjwmj: 40-45	fl£ri (2+4)	6	
		[®] j¡V ¢f¢luX =	45	

৬। <u>পাঠদান কৌশল</u>। প্রশিক্ষণের ক্ষেত্রে নিম্নলিখিত পদ্ধতি/উপায়সমূহ অনুসরণ করা হবে:

- ক। বক্তৃতা।
- খ। দলগত আলোচনা।
- গ। মাল্টিমিডিয়া প্রেজেন্টেশান।
- ঘ। নোট/সহায়কসামগ্রী প্রদান।
- ঙ। ল্যাংগুয়েজ ল্যাবে প্রশিক্ষণ।
- চ। স্পট/ক্লাস টেস্ট ইত্যাদি।

৭। <u>মূল্যায়নপদ্ধতি</u>। মূল্যায়ন পদ্ধতি নিমুরূপ:

ক্র. নং	বিষয়	নম্বর	মন্তব্য
١ د	১ 🗙 মিড টার্ম পরীক্ষা	20%	১ ঘণ্টা , ২০ নম্বর
21	ক্লাস টেস্ট	30%	৩টি (২টির নম্বর জমা দেয়া হবে, ৫%+৫%)
9 /	অ্যাসাইনমেন্ট/ দলগত উপস্থাপনা/ ক্লাস পারফরমেন্স	30%	
81	উপস্থিতি	30%	
& 1	সেমিস্টার ফাইনাল পরীক্ষা	¢0%	৩ ঘণ্টা , ১০০ নম্বর
	সর্বমোট	300%	

৮। সহায়ক পাঠ্যবই। সহায়ক গ্রন্থাবলি নিম্নরপ:

- ক। বিএমএ ক্যাডেট প্রেসি বাংলা।
- খ। বাংলা ব্যাকরণ ড. শাহজাহান মুনীর, স্টুডেন্টস পাবলিকেশনস।
- গ। প্রবন্ধসংগ্রহ ঢাকা বিশ্ববিদ্যালয়।
- ঘ। গল্পসংগ্রহ ঢাকা বিশ্ববিদ্যালয়।
- ঙ। কবিতাসংগ্রহ ঢাকা বিশ্ববিদ্যালয়।
- চ। বাংলা বানান অভিধান বাংলা একাডেমি কর্তৃক প্রকাশিত।
- ছ। বাংলা উচ্চারণ অভিধান বাংলা একাডেমি কর্তৃক প্রকাশিত।
- জ। প্রমিত বাংলা ব্যাকরণ ও নির্মিতি (তৃতীয় খণ্ড) অধ্যাপক ড. হায়াৎ মামুদ ও অধ্যাপক ড. মোহাম্মদ আমীন।
 - ঝ। বাংলা ভাষার প্রয়োগ ও অপপ্রয়োগ বাংলা একাডেমি কর্তৃক প্রকাশিত।

Course Code: GELM 275 **Course Name:** Leadership and Management

Credit Hour: 2.00 Contact Hour: 2.00

Course Curriculum: Outcome Based Education (OBE)

Pre-requisite: None

Level/Term: 2/I

Rationale:

The course is designed to make students understand the overlapping connection between engineering and management in an organization through the study of varied management practices and leadership traits as an engineer.

Objectives:

- 1. To introduce different management functions and approaches.
- 2. To expose students to different views and styles of leadership
- 3. To understand how an organization functions collaboratively with managers and engineers.
- 4. To understand various personality traits and its impact on leadership and management.
- 5. To solve real-world management problems as an engineer.

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Familiarize with the fundamental concepts of leadership and management skills	C1-C2			1	T, R, F
CO2	Explain the role and contribution of a leader in achieving organizational goals	C1-C2			1	T, ASG, R, F
CO3	Outline the contribution of leadership traits and management skills in decision making and solving real life problems	C1-C2			1	T, ASG, R, F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

Course Contents:

a. Main Contents:

Introduction to Leadership and Management; Management Fundamentals; Leadership & Motivation; Organizational Management; Planning and goal setting; Control; Change and Innovation; Attitude; Personality; Perception and Individual Decision Making; Understanding Work Team; HR Management; Operations Management; Information Technology and Management; Case studies.

b. Detailed Contents:

Introduction to Leadership and Management: Definition of leadership and

management; basic difference between a leader and a manager; relation of leaders and managers with respect to efficiency and effectiveness; qualities of leader and managers with examples from history.

Management Fundamentals: Definition of management & manager; levels of management; management functions and skills; Mintzberg's managerial roles; Henri Fayol's management principles; strategic management.

Leadership & Motivation: Motivation, Maslow's hierarchy needs; theory of X & Y; motivators and hygiene factors; goal setting theory; reinforcement theory; equity theory; expectancy theory; Leadership styles; leadership trait theory; managerial grid; contemporary leadership; conflicts negotiation; leadership issues in 21st century; cross cultural leadership; engineer as a leader and some simple case discussions on leadership (positive and toxic leadership) in the class (Interactive Learning).

Organizational Management: Organization; departmentalization; chain of command; unity of command; cross functional area; authority; centralization and decentralization; traditional & contemporary organization; matrix project structure; learning structure; organizing collaboration.

Planning and goal setting: Foundation of planning; goals of plan; types of goal; types of goal & plan; goal setting; MBO; well written goal.

Control: Controlling process; controlling for organizational performance; types of control: (feed-forward, feedback & concurrent); balanced scorecard; contemporary issues in control; workplace concern & workplace violence.

Change and Innovation: Change and innovation; internal and external for change; changing process; creativity vs innovation.

Attitude: Components of Attitude; behavior model and characteristics model; behavior vs. attitude; job attitude; job involvement; job satisfaction and customer satisfaction.

Personality: Personality determinants: heredity and environment; Myers-Briggs Type Indicator; Big five personality model; personality traits (core self-evaluation, Machiavellianism, narcissism, self-monitoring, risk taking, proactive personality).

Perception and Individual Decision Making: Factors influencing perception; attribution theory; errors/biases in attribution; Factors of individual decision making; rational decision making; bounded rationality; satisfice; common errors in decision making; creativity in decision making.

Understanding Work Team: Work group; work team; problem solving team; self-managed work team; cross functional team; virtual team; team effectiveness; team challenges.

HR Management: Process of Human Resource Planning; forecasting demand for labor; staffing; internal supply of labor; performance appraisal.

Operations Management: Project managing basics; goals and boundary of project; WBS; scheduling a project; Demand and supply forecasting; inventory control.

Information Technology and Management: Management Information System (MIS); Enterprise Resource Planning (ERP) - For introductory knowledge

Teaching-learning and Assessment Strategy:

Teaching learning strategy:

Teaching and learning activities	Engagement (hours)
Face-to-face learning	
Lecture	28
Practical/ Tutorial/ Studio	-
Student-centred learning	-
Self-directed learning	
Non face-to-face learning	10
Revision	14

Assessment preparations	14
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	71

Teaching methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Case Study Based Method

Linkage of Course Outcomes with Assessment Methods and their Weights:

Asse	ssment strategi	es	CO	Bloom's Taxonomy
Comp	Components		CO	Bloom's Taxonomy
	Class test 1-	Class test 1- 20%	CO 1	C1-C2, P1
	2	2070	CO 2	C1-C2
Continuou	Class		CO 1	C1-C2, P1, A1
S	Participatio n	5%	CO 2	C1-2, P1-P2, A1
Assessmen			CO 2	C1-2, 1 1-1 2, 7X1
t (40%)	Mid term	15%	CO 1	C1-C2, P1, A1
			CO 2	C1-C2, P1-P2, A1-A2
			CO 3	C1-C2, P1-P2, A1-A2
			CO 1	C1-C2, P1, A1
Final	Exam	60%	CO 2	C1-C2, P1-P2, A1-A2
			CO 3	C1-C2, P1-P2, A1-A2
Total	Total Marks			

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Mapping of Course Outcomes and Program Outcomes:

Cour	rse Learning Outcomes	Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Life Long Learning	Project Management and Finance
		P01	P02	P03	P04	P05	PO6	PO7	PO8	P09	PO10	P011	PO12
CO1	Familiarize with the fundamental concepts of leadership and management skills									Н	Н		

CO2	Explain the role and contribution of a leader in achieving organizational goals					Н	Н	M	
CO3	Outline the contribution of leadership traits and management skills in decision making and solving real life problems	М			M	Н	Н	M	М

(H – High, M- Medium, L- Low)

Lecture Schedule:

Week	Lecture	Topics	TEST
1	Lec 1	Introduction to Leadership and Management: Definition of leadership and management; basic difference between a leader and a manager; relation of leaders and managers with respect to efficiency and effectiveness; qualities of leader and managers with examples from history.	
	Lec 2	Management Fundamentals: Definition of management & manager; levels of management; management functions and skills; Mintzberg's managerial roles; Henri Fayol's management principles; strategic management.	Class Test 1
2	Lec 3	Leadership & Motivation: Motivation, Maslow's hierarchy	
	Lec 4	needs; theory of X & Y; motivators and hygiene factors; goal setting theory; reinforcement theory; equity theory; expectancy theory	
3	Lec 5	Leadership: Leadership styles; leadership trait theory;	
	Lec 6	managerial grid; contemporary leadership; conflicts negotiation; leadership issues in 21st century; cross cultural leadership; engineer as a leader and some simple case	
		discussions on leadership (positive and toxic leadership) in the class (Interactive Learning).	
4	Lec 7	Case Study – I : Engineer as Great Leaders	
	Lec 8		

5	Lec 9	Organizational Management: Organization; departmentalization; chain of command; unity of command; cross functional area; authority; centralization and decentralization; traditional & contemporary organization; matrix project structure; learning structure; organizing collaboration.	
	Lec 10	Planning and goal setting: Foundation of planning; goals of plan; types of goal; types of goal & plan; goal setting; MBO; well written goal.	
6	Lec 11	Control: Controlling process; controlling for organizational performance; types of control: (feed-forward, feedback & concurrent); balanced scorecard; contemporary issues in control; workplace concern & workplace violence.	
	Lec 12	Change and Innovation: Change and innovation; internal and external for change; changing process; creativity vs innovation.	
7	Lec 13	Case Study – II : Planning and Goal Setting; A Managerial Approach: Engineer as Great Managers (Interactive Discussions in the Class)	
	Lec 14	Attitude: Components of Attitude; behavior model and characteristics model; behavior vs. attitude; job attitude; job involvement; job satisfaction and customer satisfaction.	
8	Lec 15	Personality: Personality determinants: heredity and environment; Myers-Briggs Type Indicator; Big five personality model; personality traits (core self-evaluation, Machiavellianism, narcissism, self-monitoring, risk taking, proactive personality).	
	Lec 16	Perception and Individual Decision Making : Factors influencing perception; attribution theory; errors/biases in attribution	
9	Lec 17	Perception and Individual Decision Making : Factors of individual decision making; rational decision making; bounded rationality; satisfice; common errors in decision making; creativity in decision making.	Mid Term / Project
	Lec 18	Case Study – III : A Case on Decision Making – Involves both leadership and managerial skills (Interactive Discussion in the Class)	
10	Lec 19	Understanding Work Team: Work group; work team; problem solving team; self-managed work team; cross	Class Test 2
	Las 20	functional team; virtual team; team effectiveness; team challenges.	
	Lec 20	HR Management: Process of Human Resource Planning; forecasting demand for labor; staffing.	

11	Lec 21	HR Management: Internal supply of labor; performance
		appraisal.
	Lec 22	Operations Management: Project managing basics; goals
		and boundary of project; WBS; scheduling a project.
12	Lec 23	Operations Management: Demand and supply forecasting;
		inventory control.
	Lec 24	Exercise – Use of Microsoft Project (MSP) for scheduling
		a project at student level
13	Lec 25	Case Study – IV: A case that covers all relevant theories
	Lec 26	taught throughout the course and involves both leadership
		and management issues, e.g., Columbia's Final Mission.
		(This may be given as group assignment followed by in class
		short presentations/discussions)
14	Lec 27	Information Technology and Management: Management
		Information System (MIS); Enterprise Resource Planning
		(ERP) - For introductory knowledge.
	Lec 28	Revision

Text and Reference Books:

- 1. Students must be provided with SOLID reading material instead of referring text books. However, course teacher may select any text book as per his choice.
- 2. Engineering Management (Revised Edition) A.K. Gupta
- 3. Industrial Engineering and Production Management Martand T. Telsang
- 4. Leadership in Organizations Gary Yukl
- 5. Developing Management Skills David A. Whetten and Kim S. Cameron

Reference Site:

https://classroom.google.com/ (To be announced)

	COURSE INFORMATION								
Course Code	: GERM 352	Contact Hours : 4.00							
Course Title	: Fundamentals of Research Methodology	rch Methodology Credit Hours : 2.00							
	PRE-REQUISITE								
	None								
	CURRICULUM STRUCTURE								
	Outcome Based Education (OBE)								
	SYNOPSIS/RATIONALE								
	This course is essential for students to conduct research as well as for keeping abreast on the latest development in science, engineering, and technology fields.								

1. To understand the basic concepts of research and familiarize with various research methodologies 2. To expose students to techniques for reviewing research materials 3. To develop appropriate research problems, ideas, provide solution and recognize their limitations 4. To prepare a project and research proposals 5. To develop writing and presentation skills 6. To discuss research management and ethics

LEARNING OUTCOMES

- 1. Identify research problems, objectives and research questions.
- 2. Write effectively a literature review in relevant research areas.
- 3. Identify the key components of scientific and technical style, and the pitfalls associated with that style.
- 4. Present research reports both orally and in writing and evaluate research reports and finding.
- 5. Apply ethical code in research management and publications.

	COURSE OUTCOMES & GEN	COURSE OUTCOMES & GENERIC SKILLS								
No.	Course Learning Outcome	Corresponding POs	Bloom's Taxonomy	СР	CA	KP	Assessment Methods			
CO1	Identify research problems, objectives and research questions.	PO1, PO2	C1- C3	-	-	3	ASG			
CO2	Write effectively a literature review in relevant research areas.	PO5	C4	1	-	4	ASG			
CO3	Identify the key components of scientific and technical style, and the pitfalls associated with that style.		C4	1	-	5	PR			
CO4	Present research reports both orally and in writing and evaluate research reports and finding.	PO3	C5-C6	1		6	Pr			
CO5	Apply ethical code in research management and publications.	PO-3	C4	1		6	R			

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)

COURSE CONTENT

Definition of research, Objectives of research, Significance of research, Research characteristics, Types of research, Fundamental research, Applied research, Qualitative and Historical research, Quantitative research (Descriptive research, Experimental research, Quasi-Experimental research, Mixed-Methods research), Research process, Research design, Methodologies to do engineering research, Descriptions and characteristics of Theoretical, Experimental, and Computational research, Review of related literature and contemporary scientific information, Methods of data collections, Data analyses and Uncertainty analyses, Making effective Charts, Graphs, Tables, Gantt chart, Survey & Interview methods for research, Case study research, Case studies formation, Case study exercises, Research planning, Research proposals, Budget preparation, Research ethics, Plagiarism, Copyright, Intellectual Property (IP) rights, Thesis/Dissertation/Report/Paper writing format & style, Review paper structure, Importance of Literature review, References, Bibliography, End Note, Foot note, Reference styles, Reference management tools, Presentation skills (Oral, Poster), Editing and proofreading strategies, Research paper authorships.

S	SKILL MAPPING(CO-PO MAPPING)													
	No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
	110.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	11	12
C		Identify research problems, objectives and research questions.	3											
C		Write effectively a literature review in relevant research areas	3											
C	CO3	Identify the key components of scientific and technical style, and the pitfalls associated with that style.		2										
C	CO4	Present research reports both orally and in writing and evaluate research reports and finding.				2						2		
C		Apply ethical code in research management and publications.				2				2			2	
	2 11	' 1 0 M 1' 1 1)												

(3 - High, 2 -	Medium,	1-low)
----------------	---------	--------

Justification for CO-PO Mapping:							
Mapping	Corresponding Level of Matching	Justification					
CO1-PO1	3	In order to identify research problems, objectives and research questions, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to be applied.					
CO2-PO1	3	In order to write effectively a literature review in relevant research areas, the knowledge of mathematics, natural science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems is to be applied.					

CO3-PO2	3	In order to identify the key components of scier and the pitfalls associated with that style, ide research literature and analysis of complex reaching substantiated conclusions using mathematics, natural sciences and engineering	ntification, formulation, engineering problems first principles of			
CO4-PO4	2	In order to present research reports both ora evaluate research reports and finding, it is investigations of complex problems using research methods including design of exp	n order to present research reports both orally and in writing and evaluate research reports and finding, it is required to conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid			
CO4-PO10	2	In order to present research reports both ora evaluate research reports and finding, it is re effectively on complex engineering activitie community and with society at large, such as be and write effective reports and design docume presentations, and give and receive clear instruc-	quired to communicate s with the engineering eing able to comprehend entation, make effective			
CO5-PO4	2	In order to apply ethical code in research managit is required to conduct investigations of coresearch-based knowledge and research method experiments, analysis and interpretation of data information to provide valid conclusions.	omplex problems using ods including design of			
CO5-PO8	2	In order to apply ethical code in research management and publications, application of ethical principles and commit to professional ethics and responsibilities and norms of engineering practice is required.				
CO5-PO11	2	In order to apply ethical code in research managit is required to demonstrate knowledge engineering management principles and econom apply these to one's own work, as a member amanage projects and in multidisciplinary environments.	gement and publications, and understanding of nic decision-making and and leader in a team, to			
TEACHING I	LEARNING STR					
Teaching and I	Learning Activities		Engagement (hours)			
Face-to-Face L Lecture Practic	earning	0	14 14 -			
Self-Directed I						
Non-fa Revisio	28					
Formal Assess Contin Mini P Present Report Mid-Te	uous Assessment (a rojects ation	Assignment)	14 28 01 28 01			
	xamination		VI.			

Total	102

TRASNFERABLE SKILLS

Skills and how they are developed and assessed:

Skills	Development	Assessment
Technical	Lectures	Written Assessment
Analytical	Projects	Report

ASSESSMENT METHODS AND TYPE/COURSE ASSESSMENT

Weightage of each type of assessment is stated:

CO	Method	Grading (%)
CO 1, CO 2	Assignments	20
CO 3	Projects	30
CO 4	Presentation	20
CO 5	Report	30
Total Marks		100

TEACHING METHODOLOGY

Lectures and Presentation, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Weeks	Topics	Remarks
	Introduction to research:	
Week-1	Research and its purposes, main elements and process of research, qualitative	
	and quantities approach.	
Week-2	Paradigms in research knowledge, processes and strategies for a specific piece	
Week-2	of research, knowledge dissemination	
	Literature Review Procedures:	
Week-3	Reasons of surveying literature; sources of literatures: journal, conference	
W CCK-3	paper, thesis and dissertations, professional periodicals, indexes, catalogues,	
	Encyclopaedias, etc.	
	Reviewing Research Paper:	
Week-4	Process of acquiring literature;	
W CCK-4	Assessing literature relevance, classify and categorizing, keeping records,	
	commenting and critiquing;	
Week-5	Reviewing Research Paper:	
vv cek-3	Structure of writing review reports;	

	Evaluating and reviewing reports. Case Study
Week-6	Research Objectives and Methodologies: Identifying relevant research problems based on literature survey, selection of a target research topic; Explore and determine the objectives, assumptions, methods and scopes.
Week-7	Design of experiments, simulation studies, performance evaluation. Case study : Choose a highly cited paper for critical review.
Week-8	Data acquisition and Analysis: Experimental setup, error analysis.
Week-9	Statistical analysis & data validation.
Week-10	Guidelines to preparation of research presentation: Presentation outline, organization of material, hyperlinks, animation, video clip etc.
Week-11	Research Planning: Reasons for a research plan, benefits and problems of planning, sustainability, techniques of planning: hierarchical task decomposition, Gantt chart, monitoring progress, research expenses, budgeting. Case Study
Week-12	Research presentation from researchers
Week-13	Ethical Research Issues: Ethical and legal issues in conducting research, plagiarism; Patenting, Intellectual Property Rights (IPR), Case Study Effective Report Writing: Reports writing, style and format of writing, data analysis software, standard presentation software, justifying and defending the critics by reviewers.
Week-14	Research Presentation: Oral presentation of a research, selection of journal and conference for presentation/submission, Oral Presentation of research proposal.

ASSESSMENT STRATEGY

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- [1] P.D. Leedy and J.E. Ormond, *Practical Research: Planning and Design*, Pearson Education, New Jersey (USA), 2013
- [2] C.R Kothari, *Research Methodology: Methods & Techniques*, New Age International (P) Ltd Publishers, New Delhi, 2004.
- [3] R. Panneerselvam, Research Methodology, Prentice Hall of India, New Delhi, 2012.
- [4] S. Melville and W. Goddard, *Research Methodology: An Introduction for Science & Engineering Students*, Juta & Co Ltd, 1996.

- [5] K. N. Krishnaswamy, A. I. Sivakumar, and M. Mathirajan, *Management Research Methodology, Integration of Principles*, Pearson Education, New Delhi, 2009.
- [6] D. Chawla, and N. Sondhi, *Research Methodology Concepts & Cases*, Vikas Publishing House, 2018.
- [7] G. M. Hall, *How to write a paper*, 4th ed., Malden, Mass.: BMJ Books, 2008.

REFERENCE SITE

Google classroom

Course Code: IPE 415 Course Name: Project Management

Credit Hour: 3.00 Contact Hour: 3.00

Level/Term: L-4, T-1

Curriculum Structure: Outcome Based Education (OBE)

Pre-requisites: None

Rationale: This course provides the students with the ability to predict as many problems as possible and to plan, organize and control activities so that one project can be completed as successfully as possible in spite of all the risks.

Objective:

- 1. To expose students to the principles of project management and organizational dynamics
- 2. To guide students in analyzing various project appraisal techniques
- 3. To familiarize students with application and assessment of project planning, scheduling and resource allocation methods
- 4. To develop students' skills in breaking down projects and making informed decisions
- 5. To explain effective organizational leadership skills to students

Course Outcomes (CO) & Generic Skills:

Upon completion of this course, the student should be able to:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain concepts of project management and organizations	C1, C2				T, F
CO2	Analyze projects using various project appraisal technics	C3, C4	1		2	Mid Term Exam, F

CO3	Apply and assess project planning, scheduling and resource allocation methods	C3, C4	1	2,4	T, F, Mid Term
CO4	Evaluate projects to determine the most suitable approach amidst conflicting alternatives	C4,C5	1,2	2,4	F, T, ASG
CO5	Explain effective organizational leadership and change skills for financial management, managing projects, projects teams and stakeholders.	C2		2,4	F

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; PR-Presentation; R-Report; $F-Final\ Exam$)

Course Contents:

Identification, planning, appraisal, project implementation, project organization, budgeting, scheduling, using bar diagram, CPM, PERT, resource allocation, information system and project control, project termination, project organizations, matrix organization, project manager, contract negotiation and conflict resolution, case study, planning and evaluation of an investment project.

Mapping of Course Outcomes (CO) and Program Outcomes:

Course Learning Outcomes		Engineering Knowledge	Problem Analysis	Design / Development of Solutions	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Life Long Learning	Project Management and Finance
		PO1	P02	P03	P04	P05	P06	P07	P08	P09	PO10	PO11	P012
CO1	Explain concepts of project management and organizations												٧
CO2	Analyze projects using various project appraisal technics	٧	٧										
CO3	Apply and assess project planning, scheduling and resource allocation methods	٧	٧										
CO4	Evaluate projects to	٧	٧										

	determine the most suitable approach amidst conflicting alternatives.						
CO5	Explain effective organizational leadership and change skills for financial management and managing projects			٧			

(H – High, M- Medium, L-low)

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	42
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	40
Revision	20
Assignment Preparations	20
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	127

Teaching Methodology: Lecture Schedule:

Week 1	Projects in Contemporary Organizations	
Class 1	Introduction to Project management	
Class 2	Project and Project management,	
Class 3	Project Life Cycle	
Week 2	Project initiation	
Class 4	Project management maturity and project selection models	CT 1
Class 5	Project Portfolio Process	
Class 6	Projects Bids and RFP	
Week 3	Project manager	
Class 7	Project management and Project Manager	
Class 8	Project management and Project Manager	
Class 9	Attributes of effective Project Manager	
Week 4	Managing conflicts and the art of negotiation	CT 2
Class 10	Introduction to Conflict	

Class 11	Introduction to negotiation							
Class 12	The nature of negotiation							
Week 5	The project in the organizational structure							
Class 13	Projects in different types of organization I							
Class 14	Projects in different types of organization II							
Class 15	Project management team							
Week 6	Project planning							
Class 16	Project plan, WBS							
Class 17	Project risk management							
Class 18	RACI matrix and agile projects							
Week 7	Budgeting: estimating costs and risks							
Class 19	Estimating project budget							
Class 20	Cost estimation, Risk estimation							
Class 21	Risk estimation							
Week 8	Scheduling	ASG, Mid						
Class 22	Introduction to Scheduling	Term						
Class 23	Scheduling Algorithms	Exam						
Class 24	Network techniques	Exam						
Week 9	Resource allocation							
Class 25	Critical path method							
Class 26	Resource allocation problem							
Class 27	Resource loading, leveling							
Week 10	Continued							
Class 28	Constrained resource scheduling							
Class 29	Goldratt's Critical Chain							
Class 30	Multi project Scheduling and Resource allocation							
Week 11	Project execution							
Class 31	Fundamentals of project execution							
Class 32	Monitoring and information system	Final						
Class 33	Monitoring and information system	Exam,						
Week 12	Project auditing							
Class 34	Fundamentals of project controls II							
Class 35	Fundamentals of project controls II							
Class 36	Fundamentals of project controls II							
Week 13	Project auditing and termination							
Class 37	Project audit life cycle							
Class 38	Some essentials of an Audit/Evaluation							

Class 39	The Termination Process and Final Report	
Week 14	Review classes	
Class 40	Review class 01	
Class 41	Review class 02	
Class 42	Review class 03	

Linkage of Course Outcomes with Assessment Methods and their Weights:

	Assessment Strategi			9		
Components		Grading	CO	Bloom's Taxonomy		
			CO 1	C1, C2		
	Test 1-3	20%	CO 2	C3, C4		
			CO 3	C3, C4		
Continuous	Class		CO 2	C3, C4		
Assessment	Participation	5%	CO 3	C3, C4		
(40%)	Attendance	5%				
			CO 1	C1, C2		
	Mid term	10%	CO 2	C3, C4		
			CO 3	C3, C4		
			CO 1	C1, C2		
Final Exam		60%	CO 2	C3, C4		
Tillal Exalli		00%	CO 4	C4, C5		
			CO 5	C2		
Total Marks		100%				

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

- 1. Jack R. Meredith, Samuel J. Mantel, Jr. "Project Management- A Managerial Approach", $7^{\rm th}$ Edition, 2009
- 2. Eugene R. Brigham and Joel F. Houston- Fundamentals of Financial Management, $11^{\rm th}$ Edition, 2005

Course Code: GESL 313 Course Name: Environment, Sustainability and Law

Credit Hour: 2.00 Contact Hour: 2.00

Level/Term: L-3, T-1

Curriculum Structure: Outcome-Based Education (OBE)

Pre-requisites: None

Synopsis/Rationale:

This Outcome-Based Education (OBE) based course is designed to provide an introduction to the concepts and principles which underpin environmental law from the international to the local level. The course will address Constitutional responsibilities and roles relating to the environment; sustainable development and the law; environmental planning through environmental impact assessment and land-use law; environmental protection principles, climate change water resources law; heritage issues and the protection of biological diversity.

Objectives:

- 1. To offer a comprehensive overview of environment sustainability.
- 2. To provide practice-oriented information to help students find the sustainable methods for the intended environment applications.
- 3. To understand and appreciate the ethical dimensions of the role of lawyers, and the functioning of law and legal systems.
- 4. To understand the structures of sustainable environmental, and management practice.

Course Outcomes (CO) & Generic Skills:

No.	Course Learning Outcome	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain an awareness of the incompleteness of law and the continuous state of development of legal principles.	C1-C3	1		3	T, Mid Term, F

CO2	Apply the principles, techniques, and methods to problem-solving exercises.	C4	3	2		Mid Term Exam, F, R
	Identify an ability to critically analyse and	G1 G4	2			Mid Term
	apply legislation, rules and cases in context.	C1, C4	2	5	3	Exam,F,PR ,Pr
	Develop the capacity to analyse, evaluate and synthesise information from a wide variety of sources and experiences.	C4	3	5	1, 3	Mid Term Exam,F
(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test, PR – Project, Q – Quiz, ASG – Assignment, Pr – Presentation, R – Report, F – Final Exam)						

Course Contents:

Introduction to Environmental Sustainability & Law. Domestic and international law. Traditional environmental issues and broader development. International environmental law: Principles and Sustainable development. Environmental Law: National Perspectives Common Law & Constitutional Law. Commonwealth Environmental Assessment and Approval. Regulating and Assessing Development.

Regulation of Activities of Environmental Significance. Climate Change and Greenhouse issues. Water Resources –Law and Policy issues. Public participation in defending the environment. Conservation of Biological Diversity.

Mapping of Course Outcomes and Program Outcomes:

(H – High, M- Medium, L-low)

Teaching-learning and Assessment Strategy:

Teaching and Learning Activities	Engagement (hours)

Соц	arse Learning Outcomes	Engineering Knowledge	Problem Analysis	Design / Development of	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Communication	Individual and Team Work	Life-Long Learning	Project Management and
		P01	P02	P03	P04	P05	P06	PO7	PO8	P09	PO10	P011	PO12
	Explain an awareness of the incompleteness of law and the continuous state of development of legal principles.	Н		Н		Н		Н					
	Apply the principles, techniques, and methods to problem-solving exercises.		Н		Н						Н		
	Identify an ability to critically analyse and apply legislation, rules and cases in context.				Н		M					M	
	Develop the capacity to analyse, evaluate and synthesise information from a wide variety of sources and experiences.			Н				Н				М	Н
Face-to-Face Learning													
Lecture									28				
Practical / Tutorial / Studio Student-Centred Learning										-			

Self-Directed Learning	
Non-face-to-face learning	40
Revision	20
Assessment Preparations	19
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	112

Teaching Methodology:

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method, Multimedia Presentation, Class Presentation, Assignments, Class Tests, Exams, Feedback at every step.

Lecture Schedule:

Week	Lecture	Topics	ASSESSMENT
1	1	Introduction to Environmental Sustainability & Law	
	2	Introduction to Environmental Sustainability & Law (cont.)	
2	1	International environmental law: Principles and Sustainable development	
	2	International environmental law: Principles and Sustainable development (cont.)	
3	1	Environmental Law: National Perspectives Common Law & Constitutional Law	CT 1 to be held on these topics
	2	Environmental Law: National Perspectives Common Law & Constitutional Law (cont.)	diese topies
4	1	Commonwealth Environmental Assessment and Approval	

	2	Commonwealth Environmental Assessment and Approval]
		(cont.)	
	1		
5	1	Regulating and Assessing Development: State Level – Part 1	
	2	Regulating and Assessing Development: State Level –	
		Part 1 (cont.)	
6	1	Regulating and Assessing Development: State level – Part	CT 2 to be held on
		2	these topics, ASG, PR
	2	Regulating and Assessing Development: State level – Part	·
		2 (cont.)	
		, , ,	
7	1	Regulation of Activities of Environmental Significance	
	2	Regulation of Activities of Environmental Significance	
		(cont.)	
8	1	Climate Change and Greenhouse issues	
	2	Climate Change and Greenhouse issues (cont.)	ASG
9	1	Water Resources –Law and Policy issues	
	2	Water Resources –Law and Policy issues (cont.)	
10	1	Public participation in defending the environment	
	2	Public participation in defending the environment (cont.)	
11	1	Conservation of Biological Diversity	
	2	Conservation of Biological Diversity (cont.)	
12	1	Heritage issues-protection of built, natural and aboriginal	
		heritage	ASG
	2	Heritage issues-protection of built, natural and aboriginal	
		heritage (cont.)	\
13	1	Problem-based practice in the application of the law	

	2	Problem-based practice in the application of the law (cont.)	
14	1	Problem-based practice in the application of the law (cont.)	
	2	Course Review for Final Exam	

(PR – Project; ASG – Assignment)

Linkage of Course Outcomes with Assessment Methods and their Weights:

Comp	ponents	Grading	CO	Bloom's Taxonomy
			CO 1	C1 - C4
	Test 1-2	20%	CO 2	C2 - C4
Continuous			CO 4	C2
Assessment (40%)	Class		CO 1	C3, C4
(40%)	Participation	5%	CO 5	A3
	Mid-term	15%	CO 3	C1 - C4
	11220	10 / 0	CO 4	C3, C4
			CO 1	C1- C4
Final	l Exam	60%	CO 2	C3, C4
	ZAMA	3070	CO 3	C2 - C4
			CO 4	C2
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

Text and Ref Books:

- 1. DE Fisher, Australian Environmental Law (2nd ed, Thomson Reuters, 2010).
- 2. Bates and Lipman, Corporate Liability for Pollution (LBC Information Services, 1998).
- 3. Godden, Lee & Peel, Jacqueline, Environmental Law: Scientific, Policy and Regulatory dimensions, Oxford University Press, 2009.

Reference Site:

https://classroom.google.com/ (To be announced)

COURSE INF	FORMATION								
Course Code Course Title	: GEEM 243 : Engineering Ethics and Moral Philosophy	Contact Hours Credit Hours	: 2.00 : 2.00						
PRE-REQUIS	SITE								
None									
CURRICULUM STRUCTURE									
Outcome Base	d Education (OBE)								

RATIONALE

This course motivates engineers to perform under a standard of professional behaviour that requires adherence to the highest principles of ethical conduct and manage the resources and decisions effectively. Part of professional ethics is the understanding of the ethics of other professions: how they interact and what can be expected from them as correct ethical behaviour. It elevates the profession and raises future standards and imprints on individual moral mindsets and behaviours.

OBJECTIVE

1. To develop a firm ethical base.

- 2. To gain the ability to continue professional development with an understanding of the legal issues, and to critically assess the codes of professional conduct for IPE professionals.
- 3. To identify and analyze practical legal problems commonly encountered in computing industry.

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Learning Outcome (Upon completion of the course, the students will be able to)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain the theoretical aspects of ethics and moral philosophy in professional fields.	C1-C2	1		1	T, F
	Identify practical and legal problems commonly encountered by engineers in their professional industry.		1		7	MT
$\mathbf{I}(\mathbf{U})$	Develop foundation knowledge of ethics to be and apply them to solve engineering problems.	C3-C6	3, 5		3	F
16 16 1/1	Develop the communication skill by presenting topics on Engineering Ethics and Moral Philosophy.	A2		1		Pr

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile,T – Test; PR – Project; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)

COURSE CONTENT

Engineering Ethics: Introduction to Ethics; Theories of Ethics; Principles of Engineering Ethics; Ethical expectation: Employers and employees, Inter-professional relationship, Standards and codes: Institutionalization of ethical conduct. Ethical Dilemmas, Choices, Industrial Ethics: Roles of IPE engineers to society, BNBC in industries, Ethical Challenges for IPE Engineers, The Rights and Responsibilities of Engineers Safety, Risk and Liability; Case studies related to ethical issues in IPE and other Engineering disciplines. Introduction to Philosophy of Engineering, metaphysics, epistemology, axiology, and logic

SKILL MAPPING.

													
No.			PR	OGŀ	RAM	OU	ľľC	OM	ES (PO)			
	-	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Explain the theoretical aspects of ethics and moral philosophy in professional fields.												
CO2	Identify practical and legal problems commonly encountered by engineers in their professional industry.		Н										
CO3	Develop foundation knowledge of ethics to be and apply them to solve engineering problems.								M				
	Develop the communication skill by presenting topics on Engineering Ethics and Moral Philosophy.										L		

(H – High, M- Medium, L-low)

JUSTIFICAT	FION FOR	CO-PO MAPPING						
Mapping	Level	Justifications						
CO1-PO1	Medium	Understand theoretical aspects of ethics and moral philosophy in professional fields.						
CO2-PO2	High	Analyze & identify practical and legal problems commonly encountered by engineers in their professional industry.						
CO3-PO8	Medium	Build foundation knowledge of ethics to be and apply them to solve engineering problems.						
CO4-PO10	Low	Develop communication skills through participating in quiz, presentation etc.						
ΓEACHING LEARNING STRATEGY								

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	28
Practical / Tutorial / Studio	-
Student-Centred Learning	-
Self-Directed Learning	
Non-face-to-face learning	28
Revision	14
Assessment Preparations	14
Formal Assessment	
Continuous Assessment	2
Final Examination	3
Total	89
TEACHING METHODOLOGY	

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method

COURSE SCHEDULE

Week	Lecture	Topics	Assessment Methods
1	Lec 1 Lec 2	Introduction to Ethics Principles of Engineering Ethics	
2	Lec 3 Lec 4	Ethical expectation Employers and Employees Relationship Obligation of an Engineer to Clients	Class Test 1
3	Lec 5 Lec 6	Professional Organization: Standards and Codes Institutionalization of Ethical Conduct	
4	Lec 7 Lec 8	BNBC in industries	
5	Lec 9 Lec 10	Ethical Problem Solving Techniques	Class Test 2
6	Lec 11 Lec 12	Case study methodology, different case studies	
7	Lec 13 Lec 14	Roles of IPE engineers to society	
8	Lec 15 Lec 16	Ethical Dilemmas Choices (Whistle Blowing)	
9	Lec 17 Lec 18	Ethical Challenges for IPE Engineers	Mid Term
10	Lec 19 Lec 20	The Rights and Responsibilities of Engineers Safety, Risk and Liability	
11	Lec 21 Lec 22		
12	Lec 23	Case study methodology, different case studies	

	Lec 24		
13	Lec 25	Introduction to Philosophy of Engineering	
	Lec 26	Metaphysics	
14	Lec 27	Epistemology, Axiology and logic	
	Lec 28		

SSESSMENT STRATEGY

			СО	Blooms Taxonomy
Comp	oonents	Grading		
Continuous	Test 1-2	20%	C1-C2	
Assessment (40%)	Class Participation	5%	CO 4	A2
	Mid term	15%	CO 2	C3
Final	Final Exam		CO 1	C1-C2
			CO 3	C3-C6
Total	Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Engineering Ethics: Concepts and Cases (4th Edition) Charles E. Harris
- 2. Engineering Ethics (4th Edition) Charles B. Fleddermann,
- 3. The Elements Of Moral Philosophy James Rachels & Stuart Rachels

REFERENCE SITE

CHAPTER 7

DESCRIPTION OF OTHER ENGINEERING COURSES

7.1 Detailed Curriculum of CSE Courses

COURSE INFO	ORMATION		
Course Code	: CSE 281	Lecture Contact Hours	: 3.00
Course Title	: Computer Programming	Credit Hours	: 3.00

PRE-REQUISITE

Course Code: Nil Course Title: Nil

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

The Computer programming Technique course is designed to introduce the fundamental principles, mechanism of programming skills and develop basic programming skills to program design and development. The course begins with introductory concepts of structured programming language and then covers other important topics related to structured programming language. It also deals with basic data structures like stack and queue.

OBJECTIVE

- 1. Describe algorithm and solve problems using computers.
- 2. To know about various syntax, semantics of computer programming languages.
- 3. Develop basic programming skills with respect to program design and development.

LEARNING OUTCOMES& GENERIC SKILLS Course Learning Outcome

No.	Course Learning Outcome (Upon completion of the course, the students will be able to)	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
(()	Describe algorithm and solve problems using computers.	C1-C3	1		1	Т
CO2	Analyse the fundamental principles, typical characteristics and mechanisms of computer programming techniques.	C4	3		2	T, F, MT
CO3	Develop basic programming skills with respect to program design and development.	C6	1,3		5	F
	Able to develop the communication skill by presenting topics on Computer Programming Techniques.	A2		1		PR

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile,T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam, MT- Mid Term Exam)

COURSE CONTENT

Introduction to computer programming: Programming Concepts, Program Development Stages, Structured Programming Language; Number System: binary, octal, decimal and hexadecimal systems; Basic programming Structures: Data types and their memory allocation, Operators, Expressions, Basic Input/output; Control Structure: "if else", "switch", Flow Charts, Loop, Nested Loop; Arrays: One-dimensional array, Multi-dimensional array, Character array/string; Function: Function definition, Function declaration, Function call; Pointer: Different types of pointers, Pass pointer as arguments, Call by value vs call by reference; Dynamic Memory Allocation: Malloc, Calloc, Free, Realloc; User defined data types: Structures, Unions, Enumerations; Bitwise operations: AND, OR, NOT, XOR, Left shift, Right Shift; File I/O; Header files, Preprocessor; Error Handling; Introduction to C++: Basic Ideas of OOPencapsulation, inheritance and polymorphism, Classes and objects;

SKILL MAPPING

No.	Course Learning Outcome	PROGRAM OUTCOMES (PO)											
INO.	Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Describe algorithm and solve problems using	Н											
	computers.												
CO2	Analyse the fundamental principles, typical characteristics and mechanisms of computer programming techniques.		Н										
CO3	Develop basic programming skills with respect to program design and development.			Н									
CO4	Able to develop the communication skill by presenting topics on Computer programming Technique.										L		

(H – High, M	Л- Mediun	n, L-low)				
JUSTIFICA	ATION FO	OR CO-PO MAPPING				
Mapping	Level	Justifications				
CO1 – PO1	High	In order to solve complex engineering problems, know computer usage is very important.	ledge of algorithms and			
CO2 – PO2	High	To analyse the complex engineering problems one nee fundamental principles, typical characteristics and med structured programming language.	d to analyse the chanisms of a			
CO3 – PO3	High	To design and develop solutions for complex engineer to develop basic programming skills.				
CO4-PO10	Low	In order to give presentation on the selective topics fromeed strong communication skills.	om the course taught we			
TEACHING	G LEARN	IING STRATEGY				
Teaching and	d Learning	g Activities	Engagement (hours)			
Face-to-Face	_		42			
Lectu		orial / Studio	42			
		ed Learning	-			
Self-Directed	d Learning					
		ce learning	42			
Revision 21 Assessment Preparations 21						
Formal Asse		оришнопо	<u></u>			
	inuous As	sessment	2			
	l Examina	tion	3			
Total			131			
TEACHIN(
Lecture and	Discussion	n, Co-operative and Collaborative Method, Problem Bas	sed Method			

COURSE SCHEDULE

Week	Lecture	Topics	Assessment Methods
1	Lec 1	Programming Concepts, Program	
	Lec 2	Development Stages, Structured	
	Lec 3	Programming Language	
2	Lec 4	Number System: binary, octal, decimal and	
	Lec 5	hexadecimal systems; Data types and their	Class Test – 1
	Lec 6	memory allocation	Class Test – I
3	Lec 7	Operators, expressions, Basic Input/output;	1
	Lec 8	Control Structure: "if else", "switch", Flow	
	Lec 9	Charts	
4	Lec 10	Control Structures: Loop	
4	Lec 10	Control Structures. Loop	
	Lec 11		
		G . 10	-
5	Lec 13	Control Structures: Nested Loop	
	Lec 14		
	Lec 15		Class Test – 2
6	Lec 16	Arrays, Multidimensional Arrays	
	Lec 17		
	Lec 18		
7	Lec 19	String	
	Lec 20		
	Lec 21		
8	Lec 22	Function, parameter passing convention	
	Lec 23		
	Lec 24		Mid Term
9	Lec 25	Pointer	
	Lec 26		

	Lec 27		
10	Lec 31	Dynamic Memory Allocation	
	Lec 32		
	Lec 33		
11	Lec 28	User defined data types: structures, unions,	
	Lec 29	enumerations. File I/O; Header files,	
	Lec 30	Preprocessor	
12	Lec 34	Error Handling; Bitwise Operations	
	Lec 35		
	Lec 36		
13	Lec 37	Introduction to C++: Basic Ideas of OOP-	Class Test – 3
	Lec 38	encapsulation, inheritance and	
	Lec 39	polymorphism	
14	Lec 40	Introduction to C++: Classes and objects	
	Lec 41		
	Lec 42		

ASSESSMENT STRATEGY

Comp	ponents	Grading	СО	Blooms Taxonomy
	Test 1-3	20%	CO1	C1-C3
Continuous	10801-3	2070	CO2	C4
Assessment (40%)	Class Participation	5%	CO4	A2
	Mid term	15%	CO2	C4
Final Exam		60%	CO2	C4
Tillal	Filiai Exaili		CO3	C6
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Teach Yourself C Herbert Schidlt
- 2. Programming in Ansi C E Balagurusamy
 3. C: The Complete Reference Herbert Schildt

4. C Programming Language – Dennis M. Ritche

COURSE INF	FORMATION		
Course Code	: CSE 282	Lecture Contact urs	: 3.00
Course Title	: Computer Programming Sessional	Credit Hours	: 1.50

PRE-REQUISITE

Course Code: Nil

Course Title: Nil

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

RATIONALE

The Computer programming Technique Sessional course is designed to practically introduce the fundamental principles, mechanism of programming skills and develop basic programming skills to program design and development. The course begins with introductory concepts of structured programming language and then covers other important topics related to structured programming language. It also deals with basic data structures like stack and queue.

OBJECTIVE

- 1. To learn basic idea of programming languages.
- 2. To learn how to program with C, C++.
- 3. To learn how to think about the problems, their solutions and translating it to programming language.

LEARNING OUTCOMES& GENERIC SKILLS

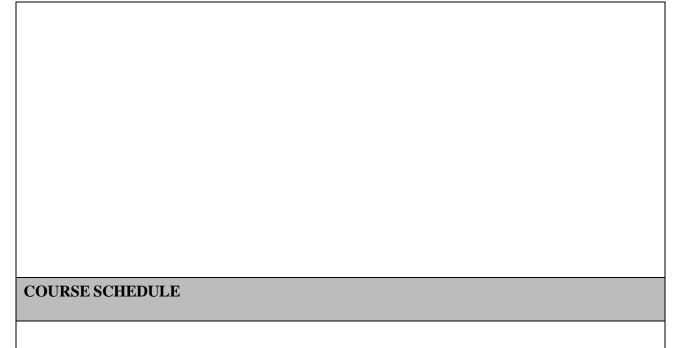
No.	Course Learning Outcome (Upon completion of the course, the students will be able to)	Bloom's Taxono my	СР	CA	KP	Assessmen t Methods
CO 1	Discuss algorithm and solve problems using computers.	C1-C3	1	3	5	F, T, ASG
CO 2	Practically analyze the fundamental principles, typical characteristics and mechanisms of a computer programming technique.	C4	3		7	F, T, ASG, Q
CO 3	Apply practical knowledge to develop basic programming skills with respect to program design and development.	C3, C6	1,3	3	7	ASG

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T-Test; PR-Project; Q-Quiz; ASG-Assignment; Pr-Presentation; R-Report; F-Final Exam, MT-Mid Term Exam)

COURSE CONTENT

Basic programming Structures: Mathematical problems using printf, scanf, Data types and their memory allocation, Operators, Expressions, Basic Input/output, Data type conversion; Control Structure: Practice problems on "if else", "switch", Flow Charts, Loop, Nested Loop; Arrays: Practice problems on One-dimensional array, Multi-dimensional array, Character array/string; Function: Practice problems on Function, Parameter Passing Convention; Pointer: Practice problems on Different types of pointers, Pass pointer as arguments, Call by value vs call by reference; Dynamic Memory Allocation: Dynamically allocate memory using Malloc, Calloc, Free, Realloc; User defined data types: Practice problems on Structures, Unions, Enumerations; File I/O; Header files, Preprocessor; Error Handling; Introduction to C++: classes and objects

SKILL MAPPING


		PROGRAM OUTCOMES (PO)											
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	1 0	1 1	12
CO1	Discuss algorithm and solve problems using computers.									Н			
CO2	Practically analyze the fundamental principles, typical characteristics and mechanisms of a structured programming technique.						Н						
CO3	Apply practical knowledge to develop basic programming skills with respect to program design and development.						Н						

(H – High, M- Medium, L-low)

JUSTIFICATION FOR CO-PO MAPPING

Mapping	Level	Justifications
CO1 – PO9	High	In order to function effectively as a member or leader of a team, one need to discuss algorithm with team members in order to solve problems using computers.
CO2 – PO6	High	In order to apply reasoning and take responsibilities relevant to the professional engineering practice, one need to analyse the fundamental

		principles, typical characteristics and mechanisms of a structured programming language.						
CO3 – PO6	High	In order to apply reasoning and take responsibilities relevant to the professional engineering practice, Apply practical knowledge to develop basic programming skills with respect to program design and development						
TEACHIN	IG LEARN	NING STRATEGY						
Teaching a	nd Learning	g Activities	Engagement (hours)					
Face-to-Fa	ce Learning							
Lec	cture		-					
Pra	ctical / Tute	orial / Studio	42					
Stu	dent-Centre	ed Learning	-					
Self-Direct	ed Learning	g						
No	Non-face-to-face learning							
Rev	Revision							
Ass	sessment Pr	reparations	_					
Formal Ass	sessment							
Con	ntinuous As	ssessment	4					
Fin	al Examina	ition	3					
Total			49					
TEACHIN	NG METH	ODOLOGY						
Lecture and	d Discussio	n, Co-operative and Collaborative Method, Problem Ba	ased Method					

Week	Lab	Topics	Remarks	
1	Lab 1			
2	Lab 1	Introduction to data types, mathematical problems using data types, data type conversion	Evaluation	
3	Lab 1	Control Structure: "if else", "else if", "switch"	Evaluation	
4	Lab 1	Control Structure: Nested "if else"	Evaluation	
5	Lab 1	Control Structure: Problem on Loop- For, Do While, Nested Loop	Evaluation	
6	Lab 1	Problem on Nested Loop, Array,	Evaluation	
7	Lab 7	Problem on Multidimensional Array	Online -1	
8	Lab 1	Problem on Nested Loop, String	Evaluation	
9	Lab 1	Problem on Function, Parameter Passing Convention	Evaluation	

10	Lab 1	Problem on Pointer, Dynamic Memory Allocation	Evaluation
11	Lab 1	Problem on User Defined Data Types: Structure, Union	Evaluation
12	Lab 1	File I/O;	Evaluation
13	Lab 1	Error Handling	Evaluation
14	Lab 1	Problems on C++: Objects and Classes	Online -2, Viva/ Quiz

ASSESSMENT STRATEGY

			CO	Blooms Taxonomy
Comp	onents	Grading		
	Lab Test	20%	CO1	C1-C3
Continuo			CO2	C4
us Assessme nt (40%)	Class Participati on	5%	CO1	C1-C3
	Assignmen t	15%	CO3	C3, C6
Online	Test – 1	20%	CO1	C1-C3
			CO2	C4
Online	Test – 2	20%	CO1	C1-C3
			CO2	C4

Viva/ Quiz	20%	CO2	C4
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

REFERENCE BOOKS

- 1. Teach Yourself C Herbert Schidlt
- 2. Programming in Ansi C E Balagurusamy
- 3. C: The Complete Reference Herbert Schildt
- 4. C Programming Language Dennis M. Ritche

7.2 Detailed Curriculum of ME Courses

COURSE INF	FORMATION		
Course Code	: SHOP 172	Lecture Contact Hours	: 2.00
Course Title	: Machine Shop Practice	Credit Hours	: 1.00

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To help the students to explore various welding techniques and put theory in practice. Our mission is to expose students to the constructions of different machines. This course is targeted to verify the working principle of types of welding, casting, molding and also to gain knowledge of different

manufacturing parts from lathe, drilling, milling and drilling machine etc. and relate them with their theoretical knowledge.

OBJECTIVE

- 1. The student will be able to use different manufacturing (machining, welding, foundry, sheet metal working, etc.) processes required to manufacture a product from the raw materials.
- 2. He will be able to use different measuring, marking, cutting tools used in workshop.
- 3. He will be aware of the safety precautions while working in workshop.

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Correspond ing PO	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Be able to identify the basics of tools and equipment used in machining, welding, casting and molding	1	СЗ			1	R, Q, LT
CO2	Be able to compare between different types of welding and machining processes and select proper cutting tool for specific machining processes.	2,3	C1, C3			1	R, Q, LT
CO3	Find out about the importance of general safety precautions on different shop floors	1	C4			1	R, Q, LT
CO4	Develop practical skills by performing the experiments in different shops of workshop	5	C3			6	R, Q, LT

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, LT – Lab Test, PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Experiments:

- 1) Design and making of pattern for casting
- 2) Mold making, casting and assembly of final project
- 3) Study of electric arc welding
- 4) Study of Resistance Welding/Spot Welding
- 5) Study of Welding joints and welding positions
- 6) Study of Gas Welding/cutting
- 7) Study of TIG and MIG Welding
- 8) Manufacturing of machine component by using Lathe machine
- 9) Manufacturing of machine component by using Shaper machine
- 10) Manufacturing of a machine component by using Milling Machine
- 11) Manufacturing of a machine component by using Drilling Machine

CO-PO MAPPING

				PF	ROG	RA	AM OUTCOMES (PO)						
No.	Course Learning Outcome	1	2	3	4	5	6	7	8	9	10	1 1	12
CO1	Be able to identify the basics of tools and equipment used in machining, welding, casting and molding	3											
CO2	Be able to compare between different types of welding and machining processes and select proper cutting tool for specific machining processes.		3	2									
CO3	Find out about the importance of general safety precautions on different shop floors	3											
CO4	Develop practical skills by performing the experiments in different shops of workshop					3							

Justification	n for CO-PO mapp	ing:
Mapping	Corresponding Level of matching	Justifications
CO1-PO1	3	In order to identify the basics of tools and equipment, the knowledge of engineering fundamental would be required.
CO2-PO2	3	In order to perform the experiments, the knowledge of engineering fundamentals would be required
CO2-PO3	2	In order to perform the experiments, the knowledge of engineering fundamentals is also required.

CO3-PO1	3	For performing the experiments, safety precautions are very essential in this laboratory.
CO4-PO5	3	Students will acquire knowledge on how to select and apply appropriate techniques, resources, and modern engineering tools.

TEACHING LEARNING STRATEGY						
Teaching and Learning Activities	Engagement (hours)					
Face-to-Face Learning						
Lecture	14					
Practical	28					
	Total 42					
Self-Directed Learning						
Preparation of Lab Reports	10					
Preparation of Lab Test	10					
Preparation of presentation	5					
Preparation of Quiz	10					
Engagement in Group Projects	20					
Formal Assessment						
Continuous Assessment	14					
Final Quiz	1					
Total	112					

TEACHING METHODOLOGY

Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method, Project Based Method

Expt-01: Design and making of pattern for casting Expt-02: Mold making, casting and assembly of final project Expt-03: Study of electric arc welding Expt-04: Study of Resistance Welding/Spot Welding
Expt-03: Study of electric arc welding Expt-04: Study of Resistance Welding/Spot Welding
Expt-04: Study of Resistance Welding/Spot Welding
Expt-05: Study of Welding joints and welding positions
Expt-06: Study of Gas Welding/cutting
Expt-07: Study of TIG and MIG Welding
Expt-08: Manufacturing of machine component by using Lathe machine
Expt-09: Manufacturing of machine component by using Shaper machine
Expt-10: Manufacturing of a machine component by using Milling Machine
Expt-11: Manufacturing of a machine component by using Drilling Machine
nal Lab Report Submission
iva
uiz Test
EEE

	Components Grading						
Continu ous Assessm	Lab participation and Report	30%					
ent							

(60%)	Labtest-1, Labtest-2	30%
Lab Quiz		40%
	Total Marks	100%

REFERENCE BOOKS

- 1. Machine Shop Practice James Anderson, W. A. Chapman.
- 2. Callister W. D., Material Science & Engineering, John Wiley & Sons.

COURSE IN	COURSE INFORMATION								
Course Code	ME 160	Contact Hours	3.00						
Course Title	Engineering Drawing	Credit Hours	1.50						
DDE DECLI	DDE DECLICITE								

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The rationale for this course is to motivate students by fostering creativity and introducing conceptual design, sustainable design in engineering, industrial design, computer aided design and drafting early in the course. Early training and practice in the engineering design method, the introduction to engineering handbooks. Engineers need skills in graphical communication and spatial vision in the practice of their profession.

OBJECTIVE

- 1. To enable students to acquire and use engineering drawing skills as a means of accurately and clearly communicating ideas, information and instructions.
- 2. To enable students to acquire requisite knowledge, techniques and attitude required for advanced study of engineering drawing.

LEARNING OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Corresponding PO	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Demonstrate proficiency in using drawing instruments for sketches.	5	Р3			5	T, ASG, Q
CO2	Analyze the 2D and 3D views for various sample objects individually and/or in a team.	9	P5			5	T, ASG, Q
CO3	Justify sketches obtained in the form of drawing reports, and projects.	10	C4			5	T, ASG, Q

(CP- Complex Problems, CA-Complex Activities, KP-Knowledge Profile, T – Test; PR – Project; Q – Quiz; ASG – Assignment; Pr – Presentation; R - Report; F – Final Exam)

COURSE CONTENT

Introduction, Instrument and their uses. (1)

Dimensioning and Title box. (1)

First and third angle projections. (1)

Orthographic drawings (2)

Sectional views and conventional practices. (2)

Auxiliary views. (1)

Isometric views (3)

Reading Mechanical Design of HVAC System. (1)

CO-PO MAPPING

No. Course Learning Outcome		PROGRAM OUTCOMES (PO)											
NO.	No. Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
	Demonstrate proficiency in using drawing instruments for sketches.					V							
CO2	Analyze the 2D and 3D views for various sample objects individually and/or in a team.									√			
11 11 11	Justify sketches obtained in the form of drawing reports, and projects.										V		

Justification for CO-PO mapping:					
Mapping	Corresponding Level of matching	Justificatios			
CO1PO3	3	To operate AutoCad and make use of it, knowledge regarding modern engineering and IT tools will be required.			
CO2PO9	3	Student must analyze the 2D and 3D views for various sample objects individually and/or in a team.			
CO3PO10	3	To communicate with other engineering professionals and manufacturers of mechanical systems, the skill to read manufacturing and construction drawings is a must.			

TEACHING LEARNING STRATEGY					
Teaching a	Engagement (hours)				
Face-to-Face Learning					
Leo	14				
Pra	28				
		Total 42			
Self-Direct	10				
	Preparation of Assignments				
Pre	10				
Pr	5 10				
	Preparation of Quiz				
	Engagement in Group Projects				
	Formal Assessment				
Continuous Assessment		14			
Final Quiz		1 112			
Total	Total				
TEACHING METHODOLOGY					
Lecture followed by practical experiments and discussion, Co-operative and Collaborative Method,					
COURSE SCHEDULE					
Week-1	Introduction; Instruments and their uses; First and third angle projections;				
Week-2	Orthographic drawings;				
Week-3	Orthographic drawings;				
Week-4	sectional views and conventional practices;				
Week-5	sectional views and conventional practices;				

Week-6	Auxiliary views
Week-7	Isometric views
Week-8	Isometric views
Week-9	Reading Civil Drawing for Mechanical Design of HVAC System.
Week-10	Importance to design and drafting, setting up a drawing: starting SolidWorks, menu, planning for a drawing
Week-11	Basic commands, making a simple 2-D drawing.
Week-12	Layers, object snap, poly lines and other features.
Week-13	File handling and display control, editing and dimensioning.
Week-14	Viva and Quiz Test

ASSESSMENT STRATEGY

Assessment Method		Grading
	Class Performance	20%
Continuous Assessment (60%)	Attendance	10%
	Assignment	10%
	50%	
	10%	
	100%	

REFERENCE BOOKS

- 1.Metric Drafting –Paul Wallah, Publisher –GlenceoPublishing Co, Inc; 1979.
- 2. Drafting Technology and Practice –William P. Spence, Publisher –Chas A. Bennett Co, Inc, 1973.
- 3. Technical Drawing Frederick E Giesecke, Alva Mitchell, Henry C. Spencer
- 4. Mechanical Engineering Drawing-AC Mandal& M.Q. Islam

7.3 Detailed Curricula of EECE Courses

COURSE INFO	COURSE INFORMATION								
Course Code Course Title	: EECE 171 : Basic Electrical and Electronic Circuit	Lecture Contact Hours Credit Hours	: 3.00 : 3.00						

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

The foundational course on electrical circuits is a basis of making freshmen engineering students well familiarize about the arena of DC and AC circuits. The course is aimed towards the methods of electric circuit analysis and evaluating their responses which can be very well achieved by the understanding of circuit laws, techniques and theorems for both AC and DC excitations. Investigation of first and second order DC circuits is vital in understanding circuit elements like capacitors and inductors used in daily life. A hands-on flavour of the course is the assessment of poly phase circuits which addresses the issue of faults and usable power in the transmission lines. Finally, this course is also aimed to teach the students the concepts, principles and working of basic electronic circuits (Diodes, BJTs)

OBJECTIVE

- 1. **Create** a foundation of basic electrical engineering and circuits.
- 2. **Familiarize** students with basic Circuit laws (Ohm, Kirchhoff), techniques (Mesh, Nodal), concepts (Superposition, Source Transformation) and theorems (Thevenin, Norton).
- 3. **Develop** the understanding of AC steady state response of single-phase circuits and power in AC circuits.
- 4. **Introduce** students to poly-phase circuits as a practical arena of AC Circuits.
- 5. **Achieve** ability to familiarize the students with the working principle of semiconductor devices (Diodes, BJTs) as electronic circuit elements.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Capable to interpret circuit laws, justify particular circuit concept(s) and theorem(s), and apply their corresponding technique to find circuit quantities and simplifying complex circuits.	PO1	C5	1,2,	-	1-4	T, MT, F

CO2	Manage to outline sinusoids, and able to understand the current voltage relation of 3 phase circuits for explaining circuit parameters, analyzing real life power consumptions of transmission lines using AC power knowledge.	PO2	C4	1,2,	1	1-4	F, ASG, MT
CO3	Be skilful to explain the operating principle of some fundamental electronic devices (Diodes, BJTs).	DO1	C2	1,2,3	-	1-4	F, ASG, Pr

COURSE CONTENT

Direct current circuits: laws and theorems, DC network analysis, alternating current: AC quantities and sinusoidal waveforms, phasors, AC circuit analysis: series and parallel branches-RL, RC, and RLC balanced three-phase circuits. Semiconductor diode: operation, characteristics and applications, introduction to bipolar junction transistors (BJTs), characteristic, common-emitter (CE), common-base (CB), common-collector (CC), and amplifier configurations.

CO-PO MAPPING

No.	Course Outcome			PF	ROG	RA	M (OU'.	ГСО	ME	S (PC))	
140.	Course Outcome		2	3	4	5	6	7	8	9	10	11	12
	Capable to interpret circuit laws, justify particular circuit concept(s) and theorem(s), and apply their corresponding technique to find circuit quantities and simplifying complex circuits.	3											
CO2	Manage to outline sinusoids, and able to understand the current voltage relation of 3 phase circuits for explaining circuit parameters analyzing real life power consumptions of transmission lines using AC power knowledge.		3										

prin elec (Die	skilful to explain the operating 3 nciple of some fundamental ctronic devices odes, BJTs).						
(Numerical matching)	I method used for mapping which indicates 3 as high, 2 as medium a	and 1 as low level of					
TEACHIN	NG LEARNING STRATEGY						
Teaching a	nd Learning Activities	Engagement (hours)					
	ce Learning	42					
	ed Learning	84					
Formal Ass	sessment	05					
Total	otal 131						
TEACHIN	NG METHODOLOGY						
Lecture and	d Discussion, Co-operative and Collaborative Method, Problem Bas	ed Method					
COURSE	SCHEDULE						
Week 1							
Class 1	Introduction to basic electrical circuit						
Class 2	Basic laws and theorems of circuit.						
Class 3	Ohm's law, Resistor, Conductor, Insulator, Semi-conductor, Bran Mesh	Ohm's law, Resistor, Conductor, Insulator, Semi-conductor, Branch, Node, Loop,					
Week 2							
Class 4	Series-parallel connection						
Class 5	KCL, KVL, Analysis of equivalent resistance of electrical circuit	KCL, KVL, Analysis of equivalent resistance of electrical circuit					
Class 6	Analysis of voltage, current and power						
Week 3							
Class 7	Analysis of current in different branches						

Power factor and energy associated with these circuits

Concept of complex power, Phasor diagram

Practice mathematical problems related to current divider and voltage divider

Introduction: Concept of phasor and complex impedance / admittance (Lec-01)

Introduction: Concept of phasor and complex impedance / admittance (Lec-02)

Mathematical Problems of Active power, reactive power, apparent power (volt

Theory of Active power, reactive power, apparent power (volt ampere)

Analysis of voltage in different parts of circuit

Class 8

Class 9

Week 4
Class 10

Class 11

Class 12

Week 5

Class 13

Class 14

Class 15

rule.

ampere)

Week 6	
Class 16	Impedance triangle and power triangle associated with complex circuits.
Class 17	Resonance in series and parallel circuits
Class 18	Q factor, half-power frequencies and bandwidth of resonant circuits.
Week 7	CT 3
Class 19	Transient response of RL,RC and RLC series and parallel circuits free response – step and sinusoidal responses
Class 20	Frequency: Damped Frequency
Class 21	Damping Factor and Logarithmic Decrement
Week 8	
Class 22	Response of circuits for non-sinusoidal periodic inputs
Class 23	Passive Filters
Class 24	Magnetically Couples Circuits
Week 9	
Class 25	Analysis of three phase circuits: Three phase supply
Class 26	Balanced and Unbalanced circuits, Power calculation (Lec-01)
Class 27	Balanced and Unbalanced circuits, Power calculation (Lec-02)
Week 10	CT 4
Class 28	Basics of semiconductor.
Class 29	p-n junction, forward bias and reverse bias concept.
Class 30	Basic structure of open-circuited p-n junction.
Week 11	
Class 31	The current components of p-n diode.
Class 32	Volt ampere characteristics of p-n junction.
Class 33	Diode resistance.
Week 12	
Class 34	p-n junction diode switching times.
Class 35	Breakdown voltage and characteristics of diode.
Class 36	Introduction to junction transistor.
Week 13	
Class 37	Basics of BJT
Class 38	Transistor characteristics components.
Class 39	Detailed study of the currents in the transistor.
Week 14	
	Common emitter, common-base and common-collector configuration of BJT
Class 40	
	Amplifier configuration of BJT.

Comp	Components		СО	Bloom's
				Taxonomy
	Test 1-3	20%	CO1	C5
	103(1-3)	2070	CO2	C4
Continuous Assessment	Class Participation	5% CO3		C2
(40%)	Class Attendance	5%		
			CO1	C5
	Mid term	15%	CO2	C4
			CO3	C2
			CO1	C5
			CO2	C4
Final	Final Exam		CO3	C2
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT AND REFERENCE BOOKS

- 1. Fundamentals of Electric Circuit by C. K. Alexander & M. N. Sadiku
- 2. Introductory Circuit Analysis by R. L. Boylsted
- 3. Alternating Current Circuits by G. S. Corcoran & R. F. Kerchner
- 4. Electric Circuits by J. A. Edminister
- 5. Basic Engineering Circuit Analysis by J. D. Irwin & R. M. Nelms
- 6. Electric Circuits by James William Nilsson
- 7. Microelectronic circuit by Sedra Smith

COURSE INFORMATION									
Course Code	: EECE 172	Lecture Contact Hours	: 1.50						
Course Title	: Basic Electrical and Electronic Circuits Sessional	Credit Hours	: 0.75						

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

This course of electrical engineering discipline aims to familiarize the students with implementation of basic electrical circuits in hardware domain. Designed for fresher students, experiments of this laboratory course will enable them to assemble beginner-level circuits to experimentally verify some fundamental circuit laws and theorems (KVL, KCL, Thevenin, Norton). This course also familiarizes the students with hardware implementation of AC circuits and measurement of ac quantities by oscilloscope. This sessional course is designed to teach the students about the concepts, principles and working of basic electronic devices and circuits by hand-held experiments.

OBJECTIVE

- 1. To enable the students to apply the fundamental circuit laws (KVL, KCL, Ohm's law) in hardware domain.
- 2. To develop students' skills to simplify complex electrical circuits into simpler circuits by Thevenin and Norton's theorem and verify them in hardware.
- 3. To teach the students the basic operation of oscilloscope to measure AC quantities (magnitude and phase).
- 4. To impart the students the skills of analogue filter design by RLC circuit.
- 5. To familiarize the students with input and output characteristics of different BJTs, FETs and also the operation of each device in terms of junction bias voltage and charge carrier movement.

COURSE OUTCOMES & GENERIC SKILLS

	No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	KP	СР	CA	Assessment Methods
(CO1	Assemble electrical circuits that can verify fundamental electrical laws such as KVL, KCL, Ohm's Law, Thevenin's and Norton's theorem.	PO5	P5, A3	6	1,2,5		R, Q, T

CO2	Achieve ability to produce desired ac waves and measure amplitude and phase of ac waves in oscilloscope.	PO4	P4	8	1,2,3	R, Q, T
CO3	Be adept to design project using analogue RLC filter that can produce desired frequency response.	PO9	P6			R, PR

COURSE CONTENT

In this course students will get a hands on experience about electrical and electronic circuits. They will observe the uses of electrical circuits practically and can use this knowledge gained in EECE 171 course for future project works.

CO-PO MAPPING

No.	Course Outcome			PF	ROC	βRA	M	OU".	ГСО	ME	S (PC))	
110.	Course Outcome	1	2	3	4	5	6	7	8	9	10	11	12
	Assemble electrical circuits that can					3							
CO1	verify fundamental electrical laws												
	such as KVL, KCL, Ohm's Law,												
	Thevenin's and Norton's theorem.												
200	Achieve ability to produce desired ac waves and measure amplitude and				3								
CO2	phase of ac waves in oscilloscope.												
CO3	Be adept to design project using analogue RLC filter that can produce desired frequency response.									3			

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching

TEACHING LEARNING STRATEGY

Teaching and Learning Activities	Engagement (hours)
Face-to-Face Learning	
Lecture	14
Practical / Tutorial / Studio	28
Student-Centred Learning	42

Self-Directed Learning	
Preparation of Lab Reports	10
Preparation of Lab Test	10
Preparation of presentation	5
Preparation of Quiz	10
Engagement in Group Projects	20
Formal Assessment	
Continuous Assessment	14
Final Examination	1
Total	112

TEACHING METHODOLOGY

Lecture and Discussion, Co-operative and Collaborative Method, Problem Based Method.

$C \cap$	URSE	CCH	FDI	TE
CO	OKSE	2011	LUU	

Week	Topic
1	Construction and operation of simple electrical circuits
3	Verification of KVL, Verification of KCL
5	Verification of Superposition Theorem, Verification of Thevenin's theorem
7	Verification of Norton's theorem, Familiarization with alternating current (ac)
	waves
9	Lab Test-01
11	Study of R-L-C series circuit, Different types of filters and its characteristics with
	different input
	frequency
13	Practice Lab, Lab Test-02
14	Quiz test, Viva

ASSESSMENT STRATEGY

Comp	onents	Grading	CO	Bloom's Taxonomy
		20%	CO1 CO2	P5, A3 P4
	Lab		CO3	P6
	participation			
	and Report			
Continuous			CO1	P5, A3
Assessment	Labtest-1	30%	CO2	P4
(75%)	,Labtest-2	3070	CO3	P6

		CO1	P5, A3
Lab Quiz	25%	CO2	P4
Total Marks	100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT AND REFERENCE BOOKS

- 1. Introductory Circuit Analysis R.L. Boylestad; Prentice Hall of India Private Ltd.
- 2. Introductory Circuits for Electrical & Computer Engineering James. W. Nilson; Prentice Hall of India Private Ltd.
- 3. Basic Electrical Engineering Fitzgerald; McGraw-Hill International.
- 4. Electricity and Magnetism Mary Atwater; McGraw-Hill.
- 5. Introduction to Electrical Engineering Robert P. Ward; Prentice Hall of India Private Ltd.
- 6. Introduction to Electric Circuits Richard C. Dorf& James A. Svoboda; John Wiley & Sons Inc.

COURSE INFORMATION								
Course Code	: EECE 271	Lecture Contact Hours	: 3.00					
Course Title	: Electrical Machines and Electronics	Credit Hours	: 3.00					
PRE-REQUISITE								

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To develop a strong foundation in the basic operating principle, constructions, characteristic features, applications etc. of AC and DC electrical machinery like DC generator, DC motor, synchronous generator, synchronous motor and three induction motors. The emphasis has been given on both physical insight and analytical techniques. The subject material covered here will provide the basis for understanding many real-world electric machinery applications as well as the foundation for advanced

courses in electric machinery design and control. It is targeted to provide a basic foundation for technology areas like electronics devices (operational amplifiers and silicon-controlled rectifiers) as well as instrumentation, control systems and various electronic circuit design.

OBJECTIVE

- 1. To develop a strong foundation on DC and AC electrical machines (DC motor, DC generator, synchronous machines, induction machines etc) with a special focus on operating principle, identification of parts and accessories, constructional features, types etc
- 2. To familiarize with advanced electronic circuits (operational amplifier and silicon-controlled rectifiers), their working principles, design criteria and applications.
- 3. To impart basic knowledge on the basic knowledge of different types of transducers with a view to know the fundamentals of instrument and control systems.
- 4. To develop a broad idea on application of electronics and electrical machines in practical industrial and domestic field.

COUR	SE OUTCOMES & GENE	RIC SKILLS					
No.	Course Outcomes	Corresponding PO	Bloom's Taxonomy	СР	CA	KP	Assessment Methods
CO1	Explain the fundamental operation, basic construction and classification of different DC and AC machines.	PO1	C2	1, 2, 3		1-4	T, F
CO2	Interpret and analyze the performance characteristics of different electrical machines e.g. transformers, DC and AC machines.	PO2	C4	1, 2, 5		1-4	T, F
CO3	Analyze electronic circuits consists of opamps and SCRs and know the fundamentals of transducers and its application in instrument and control systems.	PO1	C4	1, 2, 3		1-4	MT, F

COURSE CONTENT

Single phase transformer

DC Generator: Principles and applications **DC motor:** principle and applications,

Three phase induction motor: principle and applications.

Alternator: Principles and operation, introduction to synchronous motors. **Introduction to operational amplifiers (OP-AMPs)** and applications,

Silicon controlled rectifiers (SCR): operation and characteristics, power control using SCR

Transducers: strain, temperature, pressure, speed and torque measurements.

CO-PO MAPPING

No.	Course Outcome		PROGRAM OUTCOMES (PO)										
INO.			2	3	4	5	6	7	8	9	10	11	12
CO1	Explain the fundamental operation, basic construction and classification of different DC and AC machines.	3											

CO2	Interpret and analyze the performance characteristics of different electrical machines e.g. transformers, DC and AC machines.		3					
CO3	Analyze electronic circuits consists of op-amps and SCRs and know the fundamentals of transducers and its application in instrument and control systems.	3						

(Numerical method used for mapping which indicates 3 as high, 2 as medium and 1 as low level of matching)

TEACHING LEARNING STRATEGY					
Teaching and Learning Activities	Engagement (hours)				
Face-to-Face Learning					
Lecture	42				
Practical / Tutorial / Studio	-				
Student-Centred Learning	-				
Self-Directed Learning					
Non-face-to-face learning	42				
Revision of the previous lecture at home	21				
Preparation for final examination	21				
Formal Assessment					
Continuous Assessment	2				
Final Examination	3				
Total	131				

TEACHING I	METHODOLOGY	
Lecture and Di	scussion, Co-operative and Collaborative Method, Problem Based M	lethod
COURSE SCI	HEDULE	
Week 1	Single Phase Transformer: Principles, types	Class Test 1,
Week 2	Single Phase Transformer: Performances and characteristics.	Final
Week 3	DC generators: Principles, types	1 11141
Week 4	DC generators: Performances and characteristics.	
Week 5	Class Test 2,	
Week 6	Final	
Week 7	Three phase induction motor: Principles and applications	
Week 8	Alternator: Principles and applications	Mid Term
Week 9	Introduction to operational amplifiers (OP-AMPs)	Final
Week 10	Applications of operational amplifiers (OP-AMPs)	1 11141
Week 11	Silicon controlled rectifiers (SCR): operation and characteristics	
Week 12	Silicon controlled rectifiers (SCR): power control	Class Test 3,
	using SCR	ASG/ Pr
Week 13	Transducers: strain, temperature, pressure	Final
Week 14	Transducers: speed and torque measurements.	

ASSESSMENT STRATEGY

Components		Grading	CO	Blooms Taxonomy
	Class Test/		CO1	C2
Continuous	Assignment 1-3	20%	CO2	C4
Assessment	Assignment 1-3		CO3	C4
(40%)	Class Participation	5%	-	-
	Class Attendance		-	-
	Mid term	15%	CO3	C4
			CO1	C2
Fin	Final Exam		CO2	C4
1.111			CO3	C4
Tot	Total Marks			

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT AND REFERENCE BOOKS

Text Books:

- 1. Electrical Machinery Fundamentals Stephen J. Chapman
- 2. A textbook of Electrical Technology B.L. Theraja and A.K. Theraja
- 3. Op Amps & Linear Integrated Circuits James M. Fiore; Delmar Thomson Learing.

- 4. Operation Amplifiers and Linear Integrated Circuits- Robert F. Coughlin; Prentice Hall of India Private Ltd
- 5. Power Electronics: Device, Principles and Application Muhammad H Rashid

COURSE INFORMATION								
Course Code	I. Electrical Machines and Electronics	Lecture Contact Hours Credit Hours	: 1.50 : 0.75					

PRE-REQUISITE

None

CURRICULUM STRUCTURE

Outcome Based Education (OBE)

SYNOPSIS/RATIONALE

To help the students to explore various DC and AC machines and put theory in practice. Our mission is to expose students to the constructions of electrical machines and analyze their performance. This course is targeted to verify the properties of generator, motor etc. and relate them with their theoretical knowledge. This course is also designed to examine some electronic devices and observe their characteristics.

OBJECTIVE

- **1.** Be able to familiarize the students with the basic electrical machines like transformer, dc generator, dc motor, synchronous machines, induction machines etc.
- 2. Be able to calculate various parameters of machines like voltage regulation, efficiency etc., observe their behaviour under various load conditions and compare them.
- **3.** To develop skills of handling basic machinery equipment by engaging students in experiences with experimental processes and by growing the capability to give connection.
- **4.** Be able to impart practical knowledge on electrical machine crafting and develop collaborative learning skill.
- **5.** To develop communication as well as project management skills among the students through presentation and group projects.

COURSE OUTCOMES & GENERIC SKILLS

No.	Course Outcome	Corresponding PO	Bloom's Taxonomy	СР	CA	KP	Assessmen t Methods
CO1	Identify the characteristics of electrical machines like transformer, DC generator and motor, induction motor, alternator etc. Compute the voltage regulation and	PO1	C1, C5	1, 2, 3		1-4	R, Q, LT

	efficiency, trace various					
	curves and justify					
	characteristics of these					
	electrical machines under					
	various loading condition.					
	Compare the starting and					
	operating characteristics of					
	various induction machines					
	(squirrel cage induction motor,					
CO2	wound rotor induction motor			1,	8	
CO2	etc.) by measuring the active	PO4	C4	2,		
	power, reactive power,	1 04		5		R, Q, LT
	apparent power etc. and					11, 2, 11
	plotting torque-speed curve.					
	Identify the characteristics of					
	op-amps and justify the					
	mathematical operations			1,		
CO3	through hardware		C1 C5	2,	6	PR, Pr
	implementation.	PO5	C1, C5	5		

COURSE CONTENT

In this course, students will perform experiments to practically verify the theories and concepts learned in EECE 271 using different hardware equipment and simulation software.

CO-PO MAPPING

No.	Course Learning Outcome			PF	ROC	βRA	M	OU'	ГСО	MES	(PO)		
INO.	Course Learning Outcome		2	3	4	5	6	7	8	9	10	11	12
CO1	Identify the characteristics of electrical machines like transformer, DC generator and motor, induction motor, alternator etc. Compute the voltage regulation and efficiency, trace various curves and justify characteristics of these electrical machines under various loading condition.	3											
CO2	Compare the starting and operating characteristics of various induction machines (squirrel cage induction motor, wound rotor induction motor etc.) by measuring the active power, reactive power, apparent power etc. and plotting torque-speed curve.				3								
CO3	Identify the characteristics of opamps and justify the mathematical operations through hardware implementation.					3							

TEACHING LEARNING STRATEGY					
Teaching and Learning Activities	Engagement (hours)				
Face-to-Face Learning					
Lecture	14				
Practical	28				
	Total 42				
Self-Directed Learning					
Preparation of Lab Reports	10				
Preparation of Lab Test	10				
Preparation of presentation	5				
Preparation of Quiz	10				
Engagement in Group Projects	20				
Formal Assessment					
Continuous Assessment	14				
Final Quiz	1				
Total	112				

TEACHING METHODOLOGY

Lecture fo	ollowed by practical experiments and discussion, Co-operative and Collaborative				
Method, Project Based Method					
COURSE	ESCHEDULE				
Week-1	Introduction to the lab equipments and safety measures				
Week-3	Expt-01: Regulation of the Transformer in Various Loads.				
	Expt-02: Study the properties of DC Separately Excited Shunt Generator				
Week-5	Expt-03: Study the properties of DC Self-Excited Shunt Generator				
	Expt-04: Study the properties of DC Shunt Motor				
Week-7	Expt-05: Study the properties of Three-Phase Alternator in various loads				
	Expt-06: Study the Three-Phase Alternator synchronizing process in power utility				
	system.				
Week-9	Expt-07: Study the properties of Squirrel-Cage Induction Motor				
Week-11	Expt-08: Mathematical operation using operational amplifier (Adder and Subtractor)				
	Expt-09: Mathematical operation using operational amplifier (Integrator a				
	Differentiator).				
Week-13	Practice Lab				
Week-14	Lab Test + Viva, Quiz test				

ASSESSMENT	STRATEGY

(Components	Grading	СО	Blooms Taxonomy
	Lab participation and		CO 1	C1, C5
	Report	20%	CO 1	C1, C5
Continuous	Keport		CO 2	C4
Assessment			CO 1	C1, C5
(40%)	Labtest-1, Labtest-2	30%	CO 1 C1, C5	C1, C5
(4070)			CO 2	C1, C5 C1, C5 C4 C1, C5
	Project and Presentation	25%	CO3	C1, C5
Lab Quiz			CO 1	C1, C5
		25%	CO 1	C1, C5
			CO 2	C4
Total Marks		100%		

(CO = Course Outcome, C = Cognitive Domain, P = Psychomotor Domain, A = Affective Domain)

TEXT AND REFERENCE BOOKS

- 1. Electrical Machinery Fundamentals Stephen J. Chapman
- 2. A textbook of Electrical Technology B.L. Theraja and A.K. Theraja
- 3. Op Amps & Linear Integrated Circuits James M. Fiore; Delmar Thomson Learing.